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ABSTRACT
Brain tumor segmentation requires accurate identification of

hierarchical regions including whole tumor (WT), tumor core (TC),
and enhancing tumor (ET) from multi-sequence Magnetic Reso-
nance Imaging (MRI) images. Due to tumor tissue heterogene-
ity, ambiguous boundaries, and contrast variations across MRI
sequences, methods relying solely on visual information or post-hoc
loss constraints show unstable performance in boundary delin-
eation and hierarchy preservation. To address this challenge, we
propose the Unified Multimodal Coherent Field (UMCF) method.
This method achieves synchronous interactive fusion of visual, se-
mantic, and spatial information within a unified 3D latent space,
adaptively adjusting modal contributions through parameter-free un-
certainty gating, with medical prior knowledge directly participating
in attention computation, avoiding the traditional “process-then-
concatenate” separated architecture. On Brain Tumor Segmentation
(BraTS) 2020 and 2021 datasets, UMCF+nnU-Net achieves average
Dice coefficients of 0.8579 and 0.8977 respectively, with an average
4.18% improvement across mainstream architectures. By deeply
integrating clinical knowledge with imaging features, UMCF pro-
vides a new technical pathway for multimodal information fusion in
precision medicine.

Index Terms— Brain tumor segmentation, multimodal fusion,
medical imaging, deep learning, attention mechanism

1. INTRODUCTION

Brain tumor segmentation is one of the most challenging fundamen-
tal tasks in neuro-oncology. Its results directly impact clinical deci-
sions including preoperative assessment, treatment monitoring, and
radiotherapy planning. While multi-sequence MRI (including T1-
weighted (T1), T1-weighted contrast-enhanced (T1ce), T2-weighted
(T2), and Fluid-Attenuated Inversion Recovery (FLAIR)) provides
complementary contrast information, actual lesions typically ex-
hibit tissue heterogeneity, irregular morphology, and ambiguous
boundaries. Additionally, the nested hierarchical relationship be-
tween ET, TC, and WT (ET⊂TC⊂WT) requires global consistency
from models[1]. These factors collectively cause solutions rely-
ing on single-modal information or post-processing corrections to
compromise on boundary delineation and hierarchy preservation[2].

Current research explores two main directions: designing pow-
erful visual feature extraction networks and improving multimodal
fusion strategies. However, Convolutional Neural Networks (CNNs)
struggle with global feature relationships[3, 4], while Transformers
incur high computational costs[5, 6]. Most fusion approaches sim-
ply stack multimodal images with equal weights, ignoring MRI se-
quences’ differential sensitivity to specific pathological regions[1].

Fig. 1: UMCF overall architecture diagram

Recent attention-based methods still perform multimodal interac-
tion after rather than during feature extraction, failing to leverage
modality-specific associations (T1/T1ce for tumor core, FLAIR/T2
for edema) in attention computation[7].

This paper’s main contributions are:
1. We propose the UMCF framework for synchronous fusion of

visual, semantic, and spatial information within a unified 3D
latent space, embedding medical priors directly into attention
computation.

2. We design a parameter-free coordination mechanism includ-
ing Zero-parameter Semantic-Spatial Channel Modulation
(ZSCM), Parameter-Free Uncertainty Gating (PFUG), and con-
vex optimization updates, improving cross-modal consistency
without additional trainable parameters.

2. METHOD

2.1. Overall Architecture

UMCF changes the traditional “process-then-concatenate” pattern
by constructing a unified 3D latent space where visual (V), seman-
tic/text (T), and spatial prior (S) information interact in real-time.
This plug-and-play fusion layer, inserted between encoder and de-
coder of U-Net architectures[3, 4], receives multi-sequence MRI
images and clinical text descriptions as input. As shown in Figure 1,
multi-sequence MRI images pass through an encoder to extract
multi-scale features Fi. Multimodal fusion occurs at the bottle-
neck layer through coordinated processing by sub-modules: ZSCM,
Semantic-Spatial Attention Modulation(SSAM), Visual Attention
Read-Write with Medical Priors(VARW), and PFUG, producing
segmentation results that satisfy medical hierarchical relationships.



2.2. Data Preprocessing and Feature Extraction

Four MRI sequences (T1, T1ce, T2, FLAIR) undergo registration,
intensity normalization, and resampling to form X ∈RH×W×D×C .
Clinical text is parsed using medical NLP tools and encoded via
BiomedCLIP or ClinicalBERT[7, 10]. A U-Net encoder produces
multi-scale feature pyramid {Es}Ls=1. The bottleneck feature
B = EL is projected to d dimensions through 1×1×1 convolu-
tion, forming initial latent field F (0) ∈RHb×Wb×Db×d. All feature
vectors are L2-normalized to the unit sphere, using cosine similarity
sim(a, b) = a⊤b with temperature parameter τ > 0.

2.3. Multimodal Information Encoding and Coordinated Fu-
sion Mechanism

Visual Token Construction. Visual tokens aggregate features from
local image regions:
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where Pi indexes the i-th cubic block (e.g., 8×8×8 voxels) at bottle-
neck resolution. Average pooling within each block provides noise-
robust region representations, while normalization ensures all visual
tokens lie on the unit sphere for consistent similarity computation.

Semantic Token Construction. Medical concepts from clinical
text are converted to semantic vectors aligned with visual features:
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where each medical phrase Pj (e.g., “ring enhancement”, “central
necrosis”) obtains word embeddings e(w) through pre-trained med-
ical text encoders[7, 10]. Multiple word vectors within a phrase are
merged via average pooling then normalized. The semantic proto-
type T̄ , computed as the equal-weight average of all semantic tokens,
represents the overall semantic features of the current case.

Spatial Token Construction. Spatial prior information captures
tumor position, morphology, and topology from current segmenta-
tion probability maps Pc(·) where c∈{ET,TC,WT}:
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These statistics jointly describe tumor spatial characteristics: cen-
troid µc indicates tumor position, eigenvalues λc

1,2,3 of covariance
matrix Σc reflect tumor extension along principal directions, and
the average Signed Distance Transform (SDT) Dc—which measures
each voxel’s signed distance to the nearest boundary—characterizes
boundary thickness and inside-outside relationships[11, 12]. After
concatenating and normalizing these features, we obtain hierarchical

structure token Shier
c . Additional topological features (neighborhood

smoothness, boundary gradients, surface-to-volume ratio) form the
complete spatial token set {Sk}, with spatial prototype S̄ as their
average.

With token representations established, we construct their in-
teraction mechanism. First, semantic information requires spatial
“grounding” through the semantic field:

ϕT (x) = σ

(
sim
(
F (x), T̄

)
τ

)
. (8)

This semantic field ϕT acts as a soft spatial attention map, evaluat-
ing consistency between each voxel position and overall semantics.
High-response regions indicate strong alignment between visual fea-
tures and clinical descriptions, guiding subsequent attention mecha-
nisms.

Based on this semantic field foundation, UMCF achieves deep
multimodal fusion through four coordinated modules (Figure 2).
These modules transform tokens from three modalities into four
complementary message streams (mS , mT , mV , mST ), ultimately
fused into unified voxel representation m̃.

Visual Attention Read-Write with Medical Priors (VARW). At-
tention incorporates semantic and spatial biases:
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mV (x) =
∑
i

αV
x,i Vi, (10)

µV (x, i) = log
(
1 + ϕT (x)

)
− rhier(x) − rtopo(x) . (11)

The bias µV includes: semantic encouragement log(1 + ϕT ) with
logarithmic scaling, hierarchical penalty rhier for ET⊂TC⊂WT
violations[1], and topological penalty rtopo for discontinuous
boundaries. Thus mV (x) represents medically-constrained visual
evidence.

Semantic-Spatial Attention Modulation (SSAM). Modality-
specific messages aggregate relevant tokens:
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∑
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)
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)
z , q ∈ {T, S} .

(12)
Semantic messages (q = T ) soft-select relevant medical concepts,
while spatial messages (q=S) combine position, scale, and bound-
ary information based on feature similarity.

Zero-parameter Semantic-Spatial Channel Modulation (ZSCM).
Cross-modal synergy through element-wise multiplication:

mTS(x) =
(
T̄ ⊙ S̄

)
⊙ F (x) . (13)

Dimensions activated by both semantic and spatial prototypes are en-
hanced, while conflicting responses are suppressed, filtering features
endorsed by multiple modalities without trainable parameters.

Parameter-Free Uncertainty Gating (PFUG). Four message
streams are adaptively fused based on reliability:

m̃(x) =
∑

q∈{V,T,S,TS}

exp
(
− uq(x)

)∑
p∈{V,T,S,TS}

exp
(
− up(x)

) mq(x) . (14)

Uncertainty measures: uV uses prediction entropy (ambiguity indi-
cator), uT measures text-vision inconsistency, uS evaluates continu-



Fig. 2: UMCF core module detail diagram. Shows the semantic-spatial collaboration mechanism of ZSCM/SSAM, visual attention read-
write of VARW, and uncertainty-weighted fusion process of PFUG. Visual tokens (Vi), spatial tokens (Si), and text tokens (Ti) participate in
attention calculation through soft bias mechanism, producing multi-path messages that ultimately fuse into voxel consensus (m̃).

ity residuals, and uTS averages semantic-spatial uncertainties. Nor-
malized to [0, 1], these weights allow relying on semantic-spatial pri-
ors in ambiguous regions while prioritizing visual evidence in clear
regions.

2.4. Synchronous Convex Optimization Update

The fused message m̃(x) integrates with current field representation
via:

F (t+1)(x) = (1− λ)F (t)(x) + λ m̃(x) . (15)

With λ∈ (0, 1), this convex combination ensures convergence with-
out oscillation. After 2-4 iterations with channel-wise renormaliza-
tion, the converged field F ⋆ passes to the decoder, producing full-
resolution segmentation maps P through layer-wise upsampling.

3. EXPERIMENTS AND RESULTS

3.1. Datasets and Experimental Setup

We evaluate UMCF on BraTS 2020 (369 training, 125 valida-
tion) and BraTS 2021 (1251 training, 219 validation) benchmark
datasets[13, 9]. Each case includes four co-registered MRI se-
quences (T1, T1ce, T2, FLAIR) at 1×1×1mm³ resolution with
expert annotations for three nested hierarchical structures: enhanc-
ing tumor (ET), tumor core (TC), and whole tumor (WT), satisfying
ET⊂TC⊂WT[1].

Experiments utilize NVIDIA A100 GPUs with Dice coefficients
as the primary metric. The loss combines soft Dice and weighted
cross-entropy[14, 15]. UMCF integrates as a plug-and-play module

into 3D U-Net and nnU-Net architectures[4, 8] with base chan-
nels 32, latent dimension d = 256, using AdamW optimizer with
OneCycleLR scheduling[16, 17]. Data augmentation includes ro-
tation (±15°), flipping (50%), Gamma correction (0.8-1.2), and
modality-specific intensity enhancement. Note that due to differ-
ing calculation standards for HD95 distance in different literature
(e.g., using surface-distance library or MedPy library) [18, 19], to
ensure fairness, this paper does not adopt HD95 metric in method
comparisons.

3.2. Comparison Experiments

To evaluate UMCF’s performance improvement and verify its gen-
eralization ability across different data scales and years, we design
comprehensive comparative experiments. We select representative
methods from 2020 to 2025, covering BraTS competition winning
solutions, recently proposed innovative architectures, and methods
introducing multimodal information. Table 1 shows performance
comparisons of various methods on BraTS 2020 and 2021 valida-
tion set.

The results demonstrate UMCF’s architecture-agnostic nature,
with consistent 4% performance improvements when integrated
with both nnU-Net and simpler 3D U-Net architectures, validating
its effectiveness as a plug-and-play module that enhances differ-
ent backbone networks without architecture-specific modifications.
Notably, the most significant gains occur in smaller, ambiguous
regions, with TC improving by 6.95% and ET by 7.38%, con-
firming that multimodal fusion particularly benefits difficult cases
where visual information alone is insufficient. Furthermore, while



Table 1: Dice coefficients comparison of different methods on BraTS 2020 and BraTS 2021 datasets

BraTS 2020 BraTS 2021

Method Year Avg WT TC ET Method Year Avg WT TC ET

UMCF + nnU-Net (ours) 2025 0.8579 0.9110 0.8668 0.7958 UMCF + nnU-Net (ours) 2025 0.8977 0.9289 0.9066 0.8577
CLIP-UNet [20] 2025 0.8567 0.8994 0.8709 0.8005 Two-branch SR-Net [25] 2025 0.8970 0.9105 0.8930 0.8861
nnU-Net (Winner) [8] 2020 0.8535 0.8955 0.8506 0.8203 DeepSeg Ensemble (Winner) [26] 2021 0.8960 0.9294 0.8788 0.8803
UMCF + 3D U-Net (ours) 2025 0.8505 0.9048 0.8621 0.7846 SegResNet [27] 2025 0.8910 0.9170 0.8960 0.8610
FCFDiff-Net [21] 2025 0.8380 0.8980 0.8300 0.7860 UMCF + 3D U-Net (ours) 2025 0.8874 0.9012 0.9121 0.8488
BU-Net-ASPP [22] 2023 0.8344 0.9073 0.8159 0.7800 BU-Net-ASPP-EVO [22] 2023 0.8740 0.9187 0.8594 0.8434
Modified U-Net [23] 2023 0.8310 0.9050 0.8070 0.7810 3D ResUNet [28] 2022 0.8630 0.8190 0.9196 0.8503
LATUP-Net [24] 2024 0.8197 0.8841 0.8382 0.7367 RAL-Net [29] 2022 0.8584 0.8138 0.9076 0.8538
nnU-Net (baseline, ours) 2025 0.8175 0.8784 0.8498 0.7243 nnU-Net (baseline, ours) 2025 0.8522 0.9096 0.8477 0.7993
3D U-Net (baseline, ours) 2025 0.8088 0.8887 0.8099 0.7277 3D U-Net (baseline, ours) 2025 0.8477 0.8601 0.8716 0.8112

Table 2: Ablation study results for UMCF components (based on
nnU-Net backbone)

Configuration BraTS 2020 BraTS 2021

Avg WT TC ET Avg WT TC ET

UMCF 0.8579 0.9110 0.8668 0.7958 0.8977 0.9289 0.9066 0.8577
w/o mV 0.8377 0.8989 0.8422 0.7721 0.8835 0.9166 0.8861 0.8478
w/o mT 0.8421 0.9001 0.8473 0.7789 0.8762 0.8979 0.8842 0.8464
w/o mST 0.8395 0.8986 0.8418 0.7780 0.8692 0.8943 0.8789 0.8344
w/o mS 0.8372 0.8987 0.8416 0.7713 0.8646 0.9125 0.8652 0.8161
w/o PFUG 0.8317 0.8977 0.8422 0.7551 0.8638 0.8990 0.8753 0.8171
Pairwise fusion 0.8320 0.8921 0.8430 0.7609 0.8570 0.8761 0.8725 0.8224
Baseline 0.8175 0.8784 0.8498 0.7243 0.8522 0.9096 0.8477 0.7993

CLIP-UNet also incorporates text information for guidance, UMCF
achieves superior performance by embedding semantic bias directly
into the attention computation process, enabling real-time multi-
modal interaction throughout the network rather than relying on
post-hoc feature concatenation, thus achieving deeper semantic-
visual synergy throughout the segmentation process.

3.3. Ablation Study

To understand the specific contributions of each component in the
UMCF framework and validate the rationality of design decisions,
we conduct systematic ablation studies. Experiments observe per-
formance changes by progressively removing or replacing modules,
including four-path message passing mechanism, parameter-free un-
certainty gating, and synchronous fusion strategy. Table 2 shows the
performance of various configurations.

To analyze component contributions, we conduct ablation stud-
ies using nnU-Net backbone. Table 2 presents the quantitative
impact of removing individual modules. Results reveal critical
insights: removing spatial message mS causes maximum degrada-
tion (average 3.31% decrease on BraTS 2021, with ET decreasing
4.85%), confirming its essential role in capturing tumor morphology
and maintaining hierarchical relationships[1]. Semantic message
mT contributes 2.15%, primarily benefiting TC/ET regions where
clinical descriptions provide valuable guidance. The parameter-free
mST achieves 2.85% improvement through channel-level coor-
dination. PFUG enables 3.4% gain through uncertainty-adaptive
fusion. Most critically, replacing synchronous fusion with pairwise
fusion—where modalities are combined two at a time rather than
simultaneously yields, demonstrating that simultaneous multimodal
interaction within a unified latent space, rather than sequential pair-
wise processing, is fundamental to UMCF’s success.

3.4. Visualization Analysis

Figure 3 illustrates UMCF’s segmentation on four representative
cases, where blue, green, and orange represent WT, TC, and ET re-
gions respectively. Results demonstrate accurate morphology recon-
struction: WT regions (blue) completely envelope lesions without
over-segmentation; TC regions (green) precisely capture irregular
tumor cores; ET regions (orange), though small and scattered, are
correctly identified. Notably, the segmentation boundaries present
natural curved morphology without blocky artifacts or discontinuous
breaks, with smooth transitions between the three sub-regions while
maintaining proper nested relationships (ET⊂TC⊂WT). This con-
firms that the collaborative action of semantic field ϕT and medical
bias µV successfully achieves spatial modulation of visual attention
through medical prior knowledge, enabling UMCF to produce ac-
curate and consistent segmentations across tumors of varying sizes
and morphologies.

Fig. 3: UMCF segmentation visualization results

4. CONCLUSION

UMCF achieves synchronous fusion of visual, semantic, and spatial
information within a unified 3D latent space for brain tumor seg-
mentation. Its core innovations include semantic field-guided lo-
calization, medical knowledge-constrained attention, parameter-free
coordination, and uncertainty-adaptive fusion. Experimental results
show significant boundary quality improvement. As a plug-and-play
module, UMCF provides an effective solution for multimodal medi-
cal image analysis.
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