
A Comprehensive Framework for Legal Dispute Analysis

Integrating Prompt Engineering and Multi-dimensional

Knowledge Graphs

Mingda Zhang1, Na Zhao1,2, Jianglong Qin1,2*, Qing Xu3, Kaiwen Pan1,2, Ting Luo1

1School of Software, Yunnan University, Kunming, 650500, China.
2Yunnan Key Laboratory of Software Engineering, Kunming, 650500, China.

3School of Law, Yunnan University, Kunming, 650091, China.

*Corresponding author(s). E-mail(s): qinjianglong@ynu.edu.cn;
Contributing authors: mingda.zhang@ynu.edu.cn; na.zhao@ynu.edu.cn;
qing.xu@ynu.edu.cn; kaiwen.pan@ynu.edu.cn; ting.luo@ynu.edu.cn;

Abstract

Legal dispute analysis is crucial for intelligent legal assistance systems. However, current Large Lan-
guage Models (LLMs) face challenges in understanding complex legal concepts, maintaining reasoning
consistency, and accurately citing legal sources. This study presents a framework combining prompt
engineering with multi-dimensional knowledge graphs to improve LLM capabilities for legal dispute
analysis. The framework comprises a three-stage hierarchical prompt structure (task definition, knowl-
edge background, reasoning guidance) and a three-layer knowledge graph (legal classification ontology
layer, representation layer, instance layer). Additionally, four supporting methods enable legal concept
retrieval: direct code matching, semantic vector similarity, ontology path reasoning, and professional
terminology matching. Systematic testing on 500 test samples integrated from six internationally rec-
ognized legal AI benchmark datasets demonstrates performance improvements for mainstream models:
F1 score increased from 0.356 to 0.714, BLEU-4 reached 0.451, ROUGE-L F1 improved from 0.34 to
0.71, and legal professional content quality scores increased by 18-20 points (on a 100-point scale). This
framework provides a technical approach for legal analysis, contributing to the advancement of intelligent
legal assistance systems.

Keywords: Legal dispute analysis, Prompt engineering, Multi-dimensional knowledge graph, Knowledge
enhancement, Analysis workflow

1 Introduction

Legal dispute analysis, as a core cognitive task in judicial practice, requires legal professionals to systemat-
ically parse conflicting claims, evaluate chains of evidence, and provide judicial solutions. Industry surveys
indicate that legal professionals spend 30-50% of their working time researching applicable legal provisions
and precedent cases [1]. This situation highlights both the complexity of legal analytical work and the need
for intelligent assistance technologies. Recently released evaluation benchmarks such as LegalBench demon-
strate the multi-dimensional challenges of legal reasoning tasks [2], providing a standardized framework for
systematic evaluation of legal Artificial Intelligence (AI) capabilities.

The emergence of LLMs has brought new technical pathways for intelligent legal assistance systems. A
2024 Wolters Kluwer survey shows that 76% of legal departments and 68% of law firms have incorporated
AI tools into their daily workflows, marking the transition of legal AI from experimental exploration to the
application stage. However, this application has also exposed technical challenges: industry research indi-
cates that existing generative AI systems may have high rates of “hallucination” in legal queries [3]. Multiple
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jurisdictions, including California, have seen cases of lawyer sanctions due to AI-generated false case cita-
tions, prompting judicial institutions to advance AI regulatory frameworks. These practical problems stem
from structural limitations of LLMs: their parameter scale exhibits diminishing marginal returns with per-
formance improvement—Wu et al.’s [4] parameter scale experiments reveal that when models expand from 1
billion to 10 billion parameters, computational resource requirements grow exponentially while performance
improvements follow a logarithmic curve, creating a “scale dilemma.” Meanwhile, existing legal language
models have room for improvement in deep representation of legal knowledge, understanding of professional
concepts, and cross-jurisdictional reasoning [5].

To address these challenges, this study proposes a framework for legal dispute analysis that integrates
prompt engineering with multi-dimensional knowledge graphs. The framework is based on the technical
concept of “selective knowledge node retrieval,” which maintains reasoning performance while reducing
computational costs by locating relevant legal concepts rather than loading the entire knowledge base [1].
Compared with existing legal AI systems, this framework constructs a knowledge enhancement ecosys-
tem including legal concept retrieval, multi-level knowledge representation, and professional reasoning path
prompting [6]. This design helps improve LLM capabilities in legal norm application and case analysis.
Research shows that LLMs enhanced with legal professional feedback can improve legal reasoning abilities [7],
but knowledge expression optimization and reasoning path design remain challenges. From the perspec-
tive of legal practice regulation, legal AI systems need to balance technological innovation and professional
standardization, ensuring outputs meet legal professionalism and ethical requirements.

Based on the core challenges identified in legal dispute analysis, this study provides two technical
contributions through the integration of prompt engineering and multi-dimensional knowledge graphs:

Legal Three-Stage Prompt Engineering Framework:We design a hierarchical prompt architecture
composed of task definition, knowledge background, and reasoning guidance, achieving the transformation
from static templates to adaptive enhancement through dynamic optimization mechanisms [8, 9].

Multi-dimensional Knowledge Graph and Multi-Strategy Retrieval System: We construct a
three-layer architecture knowledge graph with complementary retrieval strategies, enabling dynamic retrieval
of legal concepts and management of knowledge timeliness [10, 11].

2 Related Work

2.1 Applications and Challenges of Large Language Models in Legal Dispute
Analysis

Recent advances in LLMs have catalyzed progress in legal AI applications. Professional legal AI systems
such as Harvey AI and Casetext CoCounsel have demonstrated the viability of combining specialized legal
knowledge with large-scale models through professional tuning [1, 12]. Retrieval-Augmented Generation
(RAG) technology has emerged as a promising pathway, with platforms adopting this approach showing
improved accuracy in independent tests [13]. The latest developments in 2025 advance this trajectory: unified
retrieval frameworks enable cross-task legal applications [14], comprehensive benchmarks systematically
evaluate agent performance [15], and step-by-step verification mechanisms enhance reasoning accuracy [16].

However, structural limitations persist despite these advances. The specialized nature of legal knowl-
edge, coupled with terminology precision requirements and jurisdictional variations, creates knowledge gaps
that general-purpose training cannot fully address [5]. High-profile incidents in 2024, including attorney
sanctions for AI-generated false case citations in California courts, underscore the severity of hallucination
problems in legal queries [3]. Three core challenges impede progress: first, data scarcity due to attorney-
client privilege restrictions limits access to high-quality legal training data; second, rapid iteration of legal
knowledge through amendments and judicial interpretations demands timely model updates; third, the
multi-layered complexity of legal reasoning requires integration of principles, provisions, precedents, and
specific facts [17–19]. This study addresses these challenges through the integration of prompt engineer-
ing with multi-dimensional knowledge graphs, implementing selective knowledge node retrieval to balance
reasoning performance with computational efficiency.

2.2 Development of Prompt Engineering in Professional Domains

Prompt engineering has evolved as a non-invasive optimization technique for LLMs, enabling task adap-
tation without parameter modification. Chain-of-Thought prompting pioneered the approach of enhancing
complex reasoning through explicit intermediate steps [8, 20]. Building on this foundation, domain-specific
applications have emerged: multi-stage frameworks optimize legal document generation [21], while structured
prompts integrating professional knowledge improve judgment prediction accuracy [22]. Recent research
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in 2024-2025 reveals a paradigm shift from static templates to dynamic optimization strategies, with
principled instructions and follow-up prompts yielding performance improvements of 16% and 9.2% respec-
tively [23, 24]. Parameter-efficient fine-tuning techniques such as LoRA and Prefix-tuning enable domain
adaptation while maintaining frozen model parameters.

Despite these advances, applicability gaps remain in legal contexts. The structured nature of legal reason-
ing demands adherence to professional argumentation frameworks such as IRAC (Issue, Rule, Application,
Conclusion), terminology precision requires accurate disambiguation of legal meanings, and citation stan-
dardization necessitates compliance with jurisdiction-specific norms [25]. More critically, existing research
predominantly addresses isolated legal tasks rather than comprehensive dispute analysis, lacking system-
atic integration with multi-dimensional knowledge structures [26]. Traditional flat prompt architectures face
difficulties with complex legal scenarios requiring synthesis of multiple concepts and multi-level reasoning.
The legal three-stage prompt engineering framework proposed in this study addresses these limitations
through hierarchical architecture integrating task definition, knowledge background, and reasoning guid-
ance. Dynamic task identification algorithms map queries to professional templates, legal reasoning path
templates provide domain-specific guidance, and adaptive optimization mechanisms transform prompt engi-
neering from ”one-time generation” to ”iterative refinement” through multi-dimensional quality assessment
feedback.

2.3 Current Status and Challenges of Multi-dimensional Knowledge Graphs

Knowledge graphs constitute the foundational infrastructure for legal knowledge representation and reason-
ing. Recent progress has transitioned construction methodologies from manual annotation to automation:
joint knowledge enhancement models embedding prior knowledge into LLMs achieve automated construction
of legal knowledge graphs with performance improvements in entity extraction and relationship identifica-
tion [27, 28]. The fusion of knowledge graphs with RAG technology has become a development direction, with
hybrid retrieval systems combining vector databases and knowledge graphs demonstrating enhanced legal
information retrieval accuracy [29]. Cross-lingual and temporal adaptation capabilities have also advanced
through specialized techniques: cross-lingual paragraph retrieval methods [30] and progressive modular
adapters [31] enable multi-jurisdictional applications, while dynamic mixture-of-experts mechanisms enhance
temporal generalization [32].

Despite these advances, challenges persist in knowledge representation granularity, timeliness mainte-
nance, and complex relationship expression. Technical obstacles concentrate in two areas: first, knowledge
acquisition and representation face high specialization demands—hierarchical relationships, citation net-
works, and applicability constraints among legal concepts resist full capture by traditional knowledge
graphs [33]; second, timeliness requirements necessitate rapid incorporation of legal amendments, judicial
interpretations, and landmark cases. Additionally, most existing legal knowledge graphs focus on single juris-
dictions or specific domains with limited cross-domain integration capabilities, dynamic update mechanisms
remain imperfect for reflecting rapid legal environment changes, and collaborative optimization pathways
between knowledge graphs and prompt engineering remain underexplored [34]. Addressing these limita-
tions, this study designs a multi-dimensional knowledge graph with three-layer architecture encompassing
legal classification ontology, legal representation, and legal instance layers, achieving coverage from abstract
concepts to concrete applications [35]. Four complementary retrieval strategies—direct legal code match-
ing, semantic vector similarity, ontology path reasoning, and professional terminology matching—enable
dynamic concept retrieval. Furthermore, unified retrieval interfaces covering authoritative legal data sources
ensure accuracy and timeliness through jurisdictional identification, timeliness marking, and change tracking
mechanisms, providing knowledge support for legal dispute analysis [34].

3 Key Technical Design and Implementation of the Legal Dispute
Analysis Framework

The legal dispute analysis framework constructs a legal dispute analysis technical ecosystem through the
integration of legal three-stage prompt engineering and multi-dimensional knowledge graphs as two core
technologies, achieving full-process enhancement from legal concept identification and knowledge acquisition
to reasoning guidance. As shown in Figure 1, the multi-dimensional knowledge graph (left side) and three-
stage prompt engineering (right side) constitute the dual core of the system architecture, presenting a
dual-module collaborative design concept where the prompt engineering module is responsible for legal
reasoning guidance and the knowledge graph module provides legal knowledge support. When users input
legal dispute queries, the system first identifies key legal concepts through multi-granularity concept retrieval
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components while activating knowledge graph query modules to obtain relevant legal knowledge, which is
then integrated by the three-stage prompt engineering module to generate structured prompts containing
task definition, knowledge background, and reasoning guidance, directing LLMs to generate professional
legal responses. The figure displays the data flow transmission paths between components and the logical
connections between functional modules, reflecting how this dual-core design achieves the integration of
knowledge retrieval and reasoning guidance while ensuring system robustness and adaptability when facing
complex legal issues.

Fig. 1: Overall architecture of the legal dispute analysis framework

3.1 Legal Three-Stage Prompt Engineering Framework

Prompt engineering, as a key technology for guiding LLM behavior, achieves task adaptation and perfor-
mance improvement by designing input instructions while keeping model parameters unchanged. Unlike
model fine-tuning methods that require large amounts of annotated data and computational resources,
prompt engineering adopts a non-invasive design, shaping model outputs only by optimizing the text struc-
ture and content of the input layer, making it suitable for Application Programming Interface (API) service
scenarios where model weights cannot be accessed and application development environments requiring rapid
iteration. However, traditional prompt engineering methods suffer from issues such as single structure, lack
of professional legal thinking paths, and insufficient reasoning depth. The three-stage prompt engineering
framework proposed in this study addresses the limitations of flat structures, designing a hierarchical archi-
tecture containing three levels: task definition, knowledge background, and reasoning guidance. Through
structured prompt design and external knowledge injection, it enhances legal reasoning capabilities under
the condition of frozen model parameters. The effectiveness of structured legal knowledge understanding
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frameworks has been validated in multiple studies [9, 23], providing empirical support for the hierarchical
prompt structure design of this study.

3.1.1 Task Definition and Precise Role Positioning Mechanism

The legal task identification matching algorithm achieves mapping from queries to professional task tem-
plates through a multi-dimensional matching mechanism. The core of this algorithm lies in considering
multiple feature dimensions such as legal domain categories, problem nature, and involved legal provisions,
calculating the matching degree between queries and task templates through an improved BM25F-style
weighting mechanism. To avoid excessive accumulation of constant terms caused by over-tokenization, this
study places the BM25+ constant term at the field aggregation layer. The calculation formula is as follows:

M(Q,Ti) =

n∑
j=1

wj

 ∑
t∈Q∩Ti

IDFj(t) ·
fj(t, Ti) (k1j + 1)

fj(t, Ti) + k1j

(
1− bj + bj

|Ti|
avgdlj

)
+

n∑
j=1

wj · δj · I[|Q ∩ Ti| > 0] (1)

Here, Q represents the user’s legal query text, Ti represents the i-th predefined legal task template, and
n represents the number of feature dimensions (including legal domain categories, problem nature, involved
legal provisions, etc.). The first term is the term matching score based on BM25, and the second term is
the field-level constant gain term, where I[|Q ∩ Ti| > 0] is an indicator function that adds the δj gain only
when that feature dimension has a match, avoiding excessive accumulation of constant terms due to term
fragmentation.

wj represents the importance weight of the j-th feature dimension, with initial values determined through
the Delphi method followed by grid search fine-tuning on annotated samples, satisfying the weight nor-
malization condition

∑n
j=1 wj = 1. The optimized weights in this experiment are: legal domain category

w1 = 0.35, problem nature w2 = 0.28, involved provisions w3 = 0.22, other features w4 = 0.15. fj(t, Ti)
represents the term frequency of term t in the j-th dimension feature of template Ti, |Ti| represents tem-
plate length, and avgdlj represents the average document length of the j-th dimension feature. k1j , bj , δj
are field-level parameters set according to field types (main text, classification, encoding) to adapt to the
heterogeneous characteristics of legal texts, where main text fields adopt BM25+ standard configuration
(k1 = 1.5, b = 0.75, δ = 1.0). IDFj(t) represents inverse document frequency, adopting the smoothed ver-

sion IDFj(t) = log
Nj−dfj(t)+0.5

dfj(t)+0.5 to improve numerical stability. This improved BM25F weighted fusion

scheme combines practical experience from the information retrieval field, identifying legal professional
terms in queries and improving task identification accuracy through term frequency saturation functions
and document length normalization mechanisms.

Algorithm 1 presents the three-stage hierarchical prompt generation process. The algorithm first identifies
the best task template through a task matching mechanism (lines 2-6), then retrieves relevant legal concepts
from the knowledge graph to construct the knowledge background (lines 8-13), next selects an appropriate
reasoning template based on task type (lines 15-16), and finally ensures the generated prompt quality reaches
preset standards through an iterative optimization loop (up to 3 iterations) (lines 18-26). The algorithm
transforms static prompt generation into a dynamic optimization process, capable of adjusting prompt
content based on quality assessment feedback, achieving the transformation from “one-time generation” to
“continuous improvement.”

3.1.2 Legal Knowledge Background Construction Mechanism

Legal knowledge background construction calculates the relevance between legal concepts and queries
through multi-dimensional assessment, with its core lying in considering four dimensions: text relevance,
knowledge graph association, case law weight, and jurisdictional relevance. This multi-dimensional assess-
ment mechanism captures the relevance degree of legal concepts, providing knowledge background for
models. The calculation formula is as follows:

R(C,Q) = α ·Rtext(C,Q) + β ·Rkg(C,Q)

+ γ ·Rcase(C,Q) + δ ·Rjur(C,Q)
(2)

This formula constructs a legal concept relevance assessment system through weighted fusion of relevance
scores from four dimensions. Here, α, β, γ, δ represent weight coefficients for each dimension, satisfying the
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Algorithm 1 Three-Stage Hierarchical Prompt Generation Algorithm

Require: Legal query Q, knowledge graph G = (V,E,R), historical case library H
Ensure: Optimized prompt P ∗

1: // Stage 1: Task Definition and Role Positioning
2: for i = 1 to |TaskTemplates| do
3: M [i]← COMPUTE-TASK-MATCH(Q,Ti) ▷ Using Formula (1)
4: end for
5: T ∗ ← argmaxi M [i]
6: Ptask ← CONSTRUCT-TASK-LAYER(Q,T ∗)
7: // Stage 2: Knowledge Background Construction
8: K ← ∅
9: for each concept c ∈ V (G) do

10: relevance[c]← COMPUTE-RELEVANCE(c,Q,G) ▷ Using Formula (2)
11: end for
12: K ← TOP-K(relevance, k)
13: Pknowledge ← CONSTRUCT-KNOWLEDGE-LAYER(K)
14: // Stage 3: Reasoning Guidance Construction
15: Template← GET-REASONING-TEMPLATE(T ∗)
16: Preasoning ← CONSTRUCT-REASONING-LAYER(Template)
17: // Quality Assessment and Iterative Optimization
18: P ← INTEGRATE(Ptask, Pknowledge, Preasoning)
19: iterations← 0
20: while iterations < MaxIterations do
21: Qscore ← EVALUATE-QUALITY(P )
22: if Qscore ≥ θmin then
23: break
24: end if
25: Dweak ← IDENTIFY-WEAK-DIMENSIONS(Qscore)
26: P ← OPTIMIZE-PROMPT(P,Dweak,G)
27: iterations← iterations + 1
28: end while
29: return P ∗ ← P

weight normalization condition α + β + γ + δ = 1. Dimension weights are determined through Bayesian
optimization methods, using Gaussian processes as surrogate models, with Top-5 hit rate as the optimization
objective over 50 iterations on historical query data. The optimized weights in this experiment are: α = 0.30
(text relevance), β = 0.35 (knowledge graph association), γ = 0.25 (case law weight), δ = 0.10 (jurisdictional
relevance).

To ensure comparability of scores across dimensions and stability across queries, all subscores are nor-
malized using a global robust normalization strategy before fusion: truncation and linear scaling to the [0, 1]
interval based on the 95th and 5th percentiles of training set statistics. This method is more robust than
min-max normalization based on single-query candidate sets, avoiding cross-query incomparability and sen-
sitivity to candidate pool size. This multi-dimensional assessment method considers surface text matching
and mines structural relationships of legal concepts in knowledge graphs, citation frequencies in judicial
practice, and regional applicability scope, thereby ensuring that retrieved legal concepts have semantic
relevance and comply with judicial practice requirements.

Text relevance Rtext(C,Q) adopts the improved BM25+ algorithm for calculation:

Rtext(C,Q) = Norm

 ∑
t∈Q∩C

IDF(t)

 f(t, C)(k1 + 1)

f(t, C) + k1

(
1− b+ b |C|

avgdl

) + δ

 (3)

This formula is an enhanced version of the classic BM25 algorithm that improves the low-score bias
problem for long documents in traditional BM25 methods by introducing a constant term δ ≥ 0. Here,
f(t, C) represents the frequency of term t in concept C, |C| represents the document length of concept
C, avgdl represents the average concept document length, k1 ∈ [1.2, 2.0] represents the term frequency
saturation parameter (this study sets k1 = 1.5), b ∈ [0, 1] represents the document length normalization
parameter (this study sets b = 0.75), and δ represents the BM25+ constant term (this study sets δ = 1.0).
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IDF(t) = log N−df(t)+0.5
df(t)+0.5 represents the smoothed inverse document frequency, where N represents the total

number of documents and df(t) represents the number of documents containing term t. Norm(·) represents
global robust normalization. The BM25+ algorithm handles legal texts of different lengths through term
frequency saturation functions and length normalization mechanisms, avoiding biases that simple term
frequency statistics might bring.

Knowledge graph association Rkg(C,Q) is calculated based on path distance between concept nodes:

Rkg(C,Q) = Norm

(
Top3-Avg

({
λd(C,e) · 1

1 + d(C, e)

∣∣∣ e ∈ EQ})) (4)

This formula combines path attenuation factor λ ∈ (0, 1) with distance reciprocal, considering both the
influence of path length and ensuring that concepts at greater distances are not excluded. Using Top-3
averaging instead of simple maximum operation improves robustness to multi-entity support signals. Here,
EQ represents the set of legal entities identified from query Q, and d(C, e) represents the shortest path length
from concept C to entity e in the knowledge graph. The path attenuation factor is set to λ = 2−1/4 ≈ 0.841,
corresponding to a half-life H = 4 hops: path weights decay by half approximately every 4 hops. This
setting results in weights of approximately 0.841, 0.707, 0.595, 0.500, 0.420 for path lengths of 1, 2, 3, 4,
5 respectively, capturing multi-hop associations while avoiding excessive attenuation. This design captures
deep associations between legal concepts—even if two concepts do not directly co-occur at the text level,
the system can identify their potential associations as long as there is a path connection between them in
the knowledge graph.

Case law weight Rcase(C,Q) is calculated based on citation statistics of concepts in relevant precedents,
adopting the Norm(log(1+ citations)) form, suppressing the influence of extreme citation numbers through
logarithmic transformation. Jurisdictional relevance Rjur(C,Q) measures the overlap degree of jurisdic-
tional label sets through the Jaccard similarity coefficient. The combination of four dimensions ensures that
retrieved legal concepts have semantic relevance and comply with judicial practice requirements, thereby
providing legal knowledge background for LLMs.

3.1.3 Legal Reasoning Guidance and Professional Path Templates

The legal reasoning guidance framework adopts a multi-dimensional assessment method to measure the
professional level of responses, including five key dimensions: legal accuracy, content comprehensiveness, cita-
tion standardization, logical rigor, and professional expression norms. Each dimension is assigned different
weights, with quality scores calculated through weighted summation to ensure generated legal analysis meets
professional standards. The assessment criteria reference the accuracy dimension in the QUEST evaluation
framework, focusing on consistency between AI system outputs and authoritative legal standards.

The quality score calculation formula is as follows:

Qscore =
∑

i∈{A,C,S,L,E}

wi · Scorei (5)

This formula assesses the overall quality of legal responses through weighted summation. Dimension
weights wi are determined through the Analytic Hierarchy Process (AHP) and satisfy the weight normal-
ization condition

∑
wi = 1. A judgment matrix is constructed for each dimension with pairwise comparison

scores by legal experts, with consistency ratio CR = 0.08 < 0.1, meeting consistency requirements. The
weights determined in this study are: legal accuracy wA = 0.35, content comprehensiveness wC = 0.20,
citation standardization wS = 0.20, logical rigor wL = 0.15, professional expression wE = 0.10.

Dimension scores Scorei ∈ [0, 1] adopt normalized scales, specifically defined as follows: Legal accuracy
(A) assesses concept precision scores, calculated as a weighted average of legal terminology accuracy and
legal provision citation correctness, with benchmark calibration as relatively accurate (1.0), slight deviations
(0.8), partially incorrect (0.5), larger errors (0.2), obviously incorrect (0.0); Content comprehensiveness (C)
measures the coverage degree of required legal points in responses, calculated as the ratio of actually cov-
ered points to total necessary points; Citation standardization (S) assesses format correctness and reliability
of legal citations, considering citation format standardization (40%), source authoritativeness (40%), and
timeliness (20%); Logical rigor (L) is assessed through coherence scores between adjacent reasoning steps,
using a reasoning chain completeness checking algorithm; Professional expression norms (E) assess terminol-
ogy accuracy, format compliance, and style appropriateness according to legal document writing standards.
This five-dimensional assessment system forms a systematic legal response quality evaluation framework for
guiding LLMs to generate legal analysis that meets professional standards. In practical applications, qual-
ity threshold θmin is dynamically set according to task types, with θmin = 0.85 for high-risk legal opinions
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and θmin = 0.75 for general consultations. Quality threshold settings are based on cost-benefit analysis:
through manual review of 200 cases, error rates and iteration costs at different thresholds are statistically
analyzed. Results show that high-risk tasks at θmin = 0.85 reduce error rates below 5% with an average of
2.3 iterations; general consultations at θmin = 0.75 balance quality (8% error rate) with efficiency (average
1.6 iterations).

3.1.4 Dynamic Prompt Optimization Mechanism

The dynamic prompt optimization mechanism serves as the adaptive component of this framework for
addressing the complexity of legal dispute analysis, improving legal analysis quality through continuous
monitoring and feedback adjustment. This mechanism adopts a closed-loop design concept, transforming
assessment feedback into prompt optimization instructions to achieve system adaptive learning capabilities.
During operation, this mechanism exhibits phased characteristics, with initial generation, quality assessment,
dynamic adjustment, and regeneration as core steps.

As shown in Figure 2, the workflow of the dynamic prompt optimization mechanism begins with user
legal query input. The system first generates an initial legal prompt based on query content, guiding LLMs to
produce preliminary legal analysis. Subsequently, a multi-dimensional response quality assessment module
evaluates the generated content and makes quality judgments based on preset thresholds: if quality meets
standards, legal analysis results are output; if quality does not meet standards, an iterative optimization loop
is initiated. In the optimization loop, an adaptive prompt adjustment module adjusts prompt structure and
content based on quality assessment feedback, while a legal knowledge fusion optimizer provides professional
knowledge in combination with multi-dimensional knowledge graphs to jointly form optimized prompts. This
entire process constitutes a closed-loop path of “assessment-adjustment-fusion-reassessment,” continuously
cycling until generated results meet preset quality standards. This mechanism is suitable for handling
complex cases involving multiple intertwined legal concepts, capable of identifying legal reasoning flaws in
model responses and improving them through prompt optimization, achieving the evolution from “static
prompts” to “dynamic dialogue.”

3.2 Multi-dimensional Knowledge Graph Design and Implementation

The complexity of legal domain knowledge representation requires multi-level structural design to cover
legal concepts and relationships at different abstraction levels. The multi-dimensional knowledge graph
designed in this study includes both traditional knowledge graph node and relationship representations
and incorporates multi-granularity concept retrieval mechanisms, capable of dynamically locating relevant
legal concepts based on queries. Knowledge-enhanced LLM-based legal knowledge graphs can improve the
accuracy and completeness of knowledge representation, providing a knowledge foundation for legal dispute
analysis.

3.2.1 Three-Layer Architecture Legal Knowledge Graph

The basic architecture of the legal knowledge graph constructed in this study includes a legal classifica-
tion ontology layer, legal representation layer, and legal instance layer, achieving coverage from abstract
legal concepts to concrete case applications. This three-layer architecture design conforms to the hierar-
chical organizational characteristics of legal knowledge, differing from traditional flat knowledge graphs by
expressing hierarchical relationships between legal concepts. Structured legal prompt frameworks can guide
models in systematic legal analysis, demonstrating certain advantages in identifying legal meanings. The
importance of multi-level knowledge representation for legal reasoning has been validated in prior research,
providing a theoretical foundation for the three-layer architecture design of this study.

The formal definition of the legal knowledge graph is as follows:

G = (Lonto,Lrep,Linst,R) (6)

This formula defines the structure of the legal knowledge graph. Here, Lonto represents the legal clas-
sification ontology layer, defining basic classifications and conceptual relationships of the legal system,
including legal department divisions (such as civil law, criminal law, administrative law, etc.), legal rela-
tionship types, and basic legal principles, providing a conceptual framework and classification standards
for the entire knowledge graph; Lrep represents the legal representation layer, located in the middle layer,
storing specific legal norm content, including legal provisions, judicial interpretations, regulations and rules,
etc. Each legal norm node is linked to corresponding ontology concepts and annotated with its effectiveness
hierarchy, scope of application, and temporal effectiveness; Linst represents the legal instance layer, located
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Fig. 2: Workflow of the dynamic prompt optimization mechanism

at the bottom layer, containing concrete judicial cases, legal consultation instances, and legal application
scenarios. Each instance node links to relevant legal norms and ontology concepts, recording the applica-
tion methods and adjudication results of legal norms in actual scenarios; R represents the set of inter-layer
relationships, R = {ris-a, rpart-of, rregulates, rcites, ...}, defining various semantic relationships between nodes
at different levels and within the same level.

3.2.2 Multi-Granularity Legal Concept Retrieval Mechanism

The multi-granularity legal concept retrieval mechanism designed in this study integrates four independent
and complementary matching strategies to achieve dynamic retrieval of legal concepts. To control compu-
tational complexity, the system adopts a two-stage retrieval strategy: first, rapid fusion of semantic vectors
and terminology matching filters out Top-500 candidate concepts, then executes complete four-strategy
matching on the candidate set. All strategy scores are normalized to the [0, 1] interval through global robust
normalization and merged through adaptive weight fusion to form comprehensive scores, thereby improving
retrieval accuracy and professionalism.

Algorithm 2 presents the multi-strategy collaborative retrieval process. The algorithm first performs
query preprocessing, extracting legal entities, legal codes, and query vectors (lines 2-4). In Stage 1, through
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Algorithm 2 Multi-Strategy Collaborative Legal Concept Retrieval Algorithm

Require: Query Q, knowledge graph G = (V,E,R), Top-k parameter k
Ensure: Ranked concept list Lranked

1: // Preprocessing Phase
2: EQ ← EXTRACT-LEGAL-ENTITIES(Q)
3: codes← EXTRACT-LEGAL-CODES(Q)
4: q⃗ ← ENCODE-QUERY(Q)
5: // Stage 1: Rapid Filtering of Top-500 Candidates
6: for each concept c ∈ V do
7: v⃗c ← ENCODE-CONCEPT(c)
8: ssem[c]← SEMANTIC-SIM(v⃗c, q⃗)
9: sterm[c]← TERM-MATCH-QUICK(c,Q)

10: sfilter[c]← 0.5 · ssem[c] + 0.5 · sterm[c]
11: end for
12: Candidates← TOP-K(sfilter, 500)
13: // Stage 2: Four-Strategy Fine-Grained Matching on Candidate Set
14: for each concept c ∈ Candidates do
15: // Strategy 1: Direct Legal Norm Code Matching
16: S1[c]← CODE-MATCH(c, codes) ▷ Using Formula (7)
17: // Strategy 2: Semantic Vector Similarity
18: S2[c]← SEMANTIC-SIMILARITY(v⃗c, q⃗) ▷ Using Formula (8)
19: // Strategy 3: Ontology Path Reasoning
20: paths← FIND-PATHS(c, EQ,G, Lmax = 5)
21: S3[c]← PATH-INFERENCE(paths) ▷ Using Formula (9)
22: // Strategy 4: Professional Terminology Matching
23: terms← EXTRACT-LEGAL-TERMS(c)
24: S4[c]← TERM-MATCHING(terms, Q) ▷ Using Formula (11)
25: end for
26: // Global Robust Normalization (Based on Training Set Statistics)
27: for i = 1 to 4 do
28: for each c ∈ Candidates do
29: Si[c]← ROBUST-NORM(Si[c], p

(i)
95 , p

(i)
5 )

30: end for
31: end for
32: // Adaptive Weight Fusion (Based on Query Features)
33: Extract features: s1 = I[codes ̸= ∅], s2 = maxc S2[c],
34: s3 = Avg-Top3(S3), s4 = term density
35: for i = 1 to 4 do
36: α[i]← COMPUTE-ADAPTIVE-WEIGHT(i, [s1, s2, s3, s4])
37: end for
38: NORMALIZE(α) ▷ Ensure

∑4
i=1 α[i] = 1

39: // Calculate Final Scores
40: for each concept c ∈ Candidates do
41: Score[c]←

∑4
i=1 α[i] · Si[c]

42: end for
43: // Diversity-Aware Reranking (Entropy-Driven)
44: Lranked ← ∅
45: Calculate score entropy: H ← −

∑
c

Score[c]∑
Score log

Score[c]∑
Score

46: µ← 0.15 + 0.2 · (1−H/ ln(|Candidates|)) ▷ Adaptive diversity coefficient
47: while |Lranked| < k and Candidates ̸= ∅ do
48: c∗ ← argmaxc∈Candidates[Score[c]− µ · REDUNDANCY(c,Lranked)]
49: Lranked ← Lranked ∪ {c∗}
50: Candidates← Candidates \ {c∗}
51: end while
52: return Lranked
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a rapid filtering mechanism combining semantic vectors and terminology matching, Top-500 candidates are
filtered from concept set V , reducing the computational cost of subsequent complex operations (lines 6-
13). Stage 2 executes four retrieval strategies in parallel on the candidate set, calculating code matching
scores, semantic similarity, path reasoning scores, and terminology matching scores respectively (lines 15-
26). All strategy scores are mapped to the [0, 1] interval through global robust normalization (95%/5%
percentile truncation) based on training set statistics (lines 28-32), ensuring cross-query comparability. Next,
dynamic weights for each strategy are calculated through an adaptive mechanism based on query features
(lines 34-39), fusing the four strategy scores to form comprehensive scores (lines 41-43). Finally, reranking
is performed through an entropy-driven diversity-aware greedy algorithm, increasing result diversity while
ensuring relevance (lines 45-52). This algorithm combines four complementary strategies, controls complexity
through two-stage retrieval, adapts to different types of queries through adaptive weight mechanisms, and
avoids redundant results through entropy-driven diversity control.

First, the direct matching method based on legal norm codes is calculated as follows:

CM(C,Q) = γ · Iexact(code(C), code(Q)) + (1− γ) · Simpartial(code(C), code(Q)) (7)

This formula achieves flexible matching of legal codes by combining exact matching and partial matching.
Here, code(C) and code(Q) represent standardized legal codes (such as legal provision numbers) for concept
C and query Q respectively, Iexact is an exact match indicator function (1 for match, 0 for no match),
Simpartial ∈ [0, 1] calculates the degree of partial matching (using longest common subsequence similarity),
and γ ∈ [0, 1] is a weight coefficient (this study sets γ = 0.8) balancing the importance of exact matching
and partial matching. This method is suitable for situations where user queries contain legal provision
numbers, enabling location of corresponding legal norms. When queries contain codes such as “Article 577
of the Civil Code,” exact matching returns the corresponding provisions; when queries contain only partial
code information, the partial matching mechanism returns relevant sets of legal provisions.

Second, the similarity calculation formula based on legal domain specialized semantic vectors is as follows:

VS(C,Q) =
v⃗C · v⃗Q
∥v⃗C∥∥v⃗Q∥

· log
(
1 +

tf(C)

df(C)

)
︸ ︷︷ ︸

≥0

· exp
(
−d(domainC , domainQ)

σ

)
(8)

This formula introduces non-negative Term Frequency-Inverse Document Frequency (TF-IDF) enhance-
ment factors and domain attenuation factors based on traditional cosine similarity. Here, v⃗C and v⃗Q are
semantic vector representations generated through legal domain pre-trained models (such as Legal-BERT),
with the first term calculating basic cosine similarity; tf(C) and df(C) are the term frequency and docu-
ment frequency of concepts respectively, with the second term ensuring non-negativity through logarithmic
transformation log(1 + tf/df) and boosting weights of important concepts; d(·, ·) is a domain distance func-
tion (using legal ontology hierarchical distance), σ > 0 is a domain attenuation parameter (this study sets
σ = 2.0), and the third term reduces scores of cross-domain concepts through a domain attenuation mech-
anism. This method captures semantic associations in legal texts, transcending the limitations of surface
text matching. Through language models specifically pre-trained on legal corpora, semantic vectors reflect
relationships between legal concepts, including hypernym-hyponym relationships, synonym relationships,
and association relationships.

Third, the path reasoning score calculation formula based on legal ontology relationship graphs is as
follows:

PI(C,Q) = max
e∈EQ

max
p∈P(C,e)

[
λ|p| ·

∑
r∈p

wr · Coherence(p)

]
(9)

This formula calculates concept relevance through valid paths in the knowledge graph, capable of dis-
covering deep associations that are not easily perceptible at the text level. Here, EQ = {e1, e2, ..., em} is the
set of legal entities identified from query Q, P(C, e) is the set of paths from concept C to entity e (path
length |p| ≤ Lmax, this study sets Lmax = 5), λ ∈ (0, 1) is a path length attenuation factor (this study
sets λ = 0.841, corresponding to half-life H = 4 hops), controlling the influence of path length on scores.
p is a path from C to e, wr is the weight of relationship r on the path, reflecting the importance of differ-
ent relationship types (e.g., is-a relationship weight 0.9, cites relationship weight 0.7). This method utilizes
structural information of knowledge graphs to infer potential legal associations through path relationships
between concepts, suitable for handling complex queries requiring cross-domain legal knowledge associations.

The path coherence function is defined as:
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Coherence(p) =

|p|−1∏
i=1

c̃i,i+1

 1
|p|−1

, c̃i,i+1 =
exp(Compat(ri, ri+1))∑
r′∈R exp(Compat(ri, r′))

(10)

This formula evaluates the logical coherence of entire paths by calculating the compatibility of adja-
cent relationship types in paths, adopting geometric mean form to prevent numerical underflow. Here,
Compat(ri, ri+1) represents elements of the relationship compatibility matrix, measuring logical consistency
between continuous relationship types. The compatibility matrix is constructed based on legal expert knowl-
edge, reflecting the reasonableness degree of different relationship type combinations. For example, an “is-a”
relationship followed by a “part-of” relationship has high compatibility (0.8), while a “cites” relationship
followed by an “is-a” relationship has low compatibility (0.2). c̃i,i+1 ensures coherence scores are in the (0, 1]
range through softmax normalization. The geometric mean ensures Coherence(p) ∈ (0, 1] without system-
atic attenuation as path length increases. This design ensures the system considers both path existence and
evaluates path logical reasonableness, thereby improving the reliability of reasoning results.

Fourth, the score calculation formula based on professional terminology matching is as follows:

TM(C,Q) =

∑
t∈Terms(C) wt ·Match(t, Q) · ILT(t) · Context(t, C)∑

t∈Terms(C) wt
(11)

This formula achieves matching of legal professional terminology by considering term matching degree,
legal professional weight, and contextual relevance. Here, Terms(C) is the set of professional legal terms
extracted from concept C, and wt is the importance weight of term t (calculated through TF-IDF). Term
matching degree Match(t, Q) is defined as:

Match(t, Q) = α1 · Iexact(t, Q) + α2 · Simstem(t, Q) + α3 · Simsem(t, Q) (12)

This formula combines exact matching, stemming matching, and semantic matching. Here, Iexact(t, Q) ∈
{0, 1} is the exact match score, Simstem(t, Q) ∈ [0, 1] is the stemming match score (using the Porter stemming
algorithm), Simsem(t, Q) ∈ [0, 1] is the semantic similarity score (based on word vector cosine similarity), and
α1, α2, α3 are weight coefficients (this study sets α1 = 0.6, α2 = 0.2, α3 = 0.2), satisfying α1 + α2 + α3 = 1.
The combination of three matching methods can handle different forms of terminology expression, capable
of identifying identical terms and handling word form variations and synonymous expressions.

The term legal professional weight ILT(t) (Inverse Legal Terminology) is calculated as follows:

ILT(t) = log

(
freqlegal(t) + σ

freqgeneral(t) + σ

)
· JurScope(t) (13)

This formula identifies terms with legal professional characteristics by comparing the frequency distri-
bution of terms in legal corpora and general corpora. Here, freqlegal(t) is the frequency of term t in legal
corpora, freqgeneral(t) is the frequency in general corpora, σ is a smoothing factor (this study sets σ = 1.0)
to avoid computational problems caused by zero frequency. JurScope(t) ∈ [0, 1] is the term’s judicial appli-

cation scope coefficient, defined as JurScope(t) = 1 − Var(usagejurisdictions(t))

maxvar
, where Var(·) is variance and

maxvar is a normalization constant, reflecting the consistency of term application across different judicial
domains. This method identifies typical legal terms such as “bona fide acquisition” and “gross negligence”
and assigns higher weights, thereby improving retrieval professionalism.

The context score function is defined as:

Context(t, C) =
1

|Window(t, C)|
∑

w∈Window(t,C)

PMI(t, w) · I[w ∈ Vlegal] (14)

This formula captures the contextual semantic features of terms through Pointwise Mutual Information
(PMI). Here, Window(t, C) is the context window of term t in concept C (5 words before and after),

PMI(t, w) = log p(t,w)
p(t)·p(w) is pointwise mutual information measuring co-occurrence strength between two

words, Vlegal is a legal professional vocabulary (containing approximately 10,000 commonly used legal terms),
and I[·] ∈ {0, 1} is an indicator function. This method distinguishes the professional degree of the same
term in different contexts. For example, “good faith” in the “bona fide acquisition” context has higher PMI
values than in the “kind reminder” context, thereby ensuring the system identifies legal professional usage.

The diversity-aware redundancy calculation formula is:

Redundancy(c,L) = max
c′∈L

[ω1 · Simsem(c, c
′) + ω2 ·Overlapdom(c, c

′) + ω3 · Simstruct(c, c
′)] (15)
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This formula judges the degree of redundancy between concepts by synthesizing similarities in seman-
tic, domain, and structural dimensions. Here, ω1, ω2, ω3 are dimension weights (this study sets ω1 =
0.4, ω2 = 0.3, ω3 = 0.3), and Simsem ∈ [0, 1] is semantic similarity (using the cosine part of Formula (8)).
Overlapdom(c, c

′) ∈ [0, 1] is domain overlap degree, defined as:

Overlapdom(c, c
′) =

|Domain(c) ∩Domain(c′)|
|Domain(c) ∪Domain(c′)|

(16)

Here, Domain(c) is the set of legal domain labels to which concept c belongs (such as {civil law, contract
law, tort law}), calculating set overlap degree using the Jaccard coefficient. Simstruct ∈ [0, 1] is structural
similarity, calculated using the Jaccard coefficient:

Simstruct(c1, c2) =
|N (c1) ∩N (c2)|
|N (c1) ∪N (c2)|

(17)

Here, N (c) represents the set of neighbor nodes of concept c in the knowledge graph (1-hop neighbors).
This method measures the similarity degree of two concepts in graph structure by calculating the proportion
of common neighbors to all neighbors. The diversity control mechanism avoids returning similar concepts
such as “tort liability” and “tortious conduct,” instead ensuring the return of concepts representing different
legal relationships such as “breach of contract” and “tort liability,” thereby providing users with a more
comprehensive legal knowledge perspective.

This multi-strategy fusion mechanism utilizes the structured features and semantic associations of legal
texts, enabling identification of legal concepts relevant to queries and providing a knowledge foundation for
legal dispute analysis. The system ranks retrieved legal concepts based on comprehensive scores, prioritizing
the presentation of more relevant content, thereby improving the accuracy and professionalism of legal
analysis.

3.2.3 Integration of Knowledge Graph and Web Search

The timeliness issue of legal knowledge is a key technical challenge for legal LLMs, with traditional static
knowledge representation struggling to adapt to frequent updates of legal regulations and dynamic evolu-
tion of judicial interpretations. This framework constructs a multi-source heterogeneous legal knowledge
integration mechanism, achieving coupling of multi-dimensional knowledge graphs with professional legal
web search. Legal knowledge graphs as an intermediate layer between users and LLMs can enhance the legal
correctness and citation standardization of model answers.

This mechanism first establishes a unified retrieval interface covering authoritative legal data sources,
ensuring that retrieved legal information meets timeliness requirements through three mechanisms: the juris-
dictional identification mechanism judges the applicable legal system and regional scope based on query
content; the legal concept timeliness marking mechanism annotates each legal concept in the knowledge
graph with effective time, ineffective time, and revision history; the change tracking mechanism monitors
revisions and abolitions of legal regulations in real-time, updating the knowledge graph in a timely manner.
Second, this study develops a legal authoritativeness assessment model that calculates authoritativeness
scores based on factors such as legal source types, publishing institution hierarchy, and citation fre-
quency, prioritizing the use of high-authority information. Finally, semantic fusion of knowledge graphs with
dynamic retrieval results is achieved, forming a legal knowledge service system that maintains structured
representation advantages while having real-time update capabilities.

3.2.4 Core Parameter Configuration and Reproducibility

To ensure system reproducibility, Table 1 summarizes core parameter configurations for each module,
including default values and experimentally optimized values. These parameters have undergone systematic
experimental validation and expert review, balancing retrieval accuracy while considering computational
efficiency.

Sensitivity analysis of path attenuation factor λ and domain attenuation parameter σ shows performance
differences within the recommended range are less than 2%, demonstrating parameter selection robustness.
Quality threshold settings are based on cost-benefit analysis: high-risk tasks at θmin = 0.85 reduce error
rates below 5%, while general consultations at θmin = 0.75 balance quality with efficiency.
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Table 1: Overview of core parameter configurations

Module Parameter Optimized Value/Range

Task Matching
Text field k1 = 1.5, b = 0.75, δ = 1.0
Code field k1 = 1.2, b = 0.0, δ = 0.3
Dimension weights (0.35, 0.28, 0.22, 0.15)

Knowledge Background
Fusion weights (α, β, γ, δ) = (0.30, 0.35, 0.25, 0.10)
BM25+ k1 = 1.5, b = 0.75, δ = 1.0

Graph Retrieval
Path attenuation λ = 0.841 (half-life H = 4, range 3-5)
Domain attenuation σ = 2.0 (range 1.5-3.0)
Candidate pool Top-500 (range 200-1000)

Term Matching
Match weights (α1, α2, α3) = (0.6, 0.2, 0.2)
ILT smoothing σ = 1.0
Context window 5 words before/after

Diversity Reranking
Base coefficient µ ∈ [0.15, 0.35] (adaptive)
Top-k k = 12

Quality Assessment
Dimension weights (0.35, 0.20, 0.20, 0.15, 0.10)
Quality threshold θmin = 0.85(high-risk), 0.75(general)

4 Experiments and Evaluation

4.1 Statistical Analysis Methods

To ensure the scientific rigor and reliability of experimental results, we adopt a strict statistical analy-
sis framework. Paired t-tests are used to assess performance differences between baseline and complete
configurations, with significance level set at α = 0.05. For non-normally distributed data, the Wilcoxon
signed-rank test is employed. Each model configuration runs 3 times on 500 test samples (random seeds: 42,
2024, 2025), reporting means and 95% confidence intervals. Effect size is measured using Cohen’s d, with
judgment criteria: small effect (d = 0.2), medium effect (d = 0.5), large effect (d = 0.8), very large effect
(d > 2.0). In ablation experiments, Bonferroni correction controls family-wise error rate in multiple com-
parisons. All experiments are conducted on two NVIDIA A100 (80GB) Graphics Processing Units (GPUs),
with statistical analysis completed using Python scipy.stats package.

4.2 Experimental Setup

Dataset Construction and Sampling Strategy: To ensure comprehensive evaluation and cross-
jurisdictional adaptability of the framework, this study conducts integrated sampling from six internationally
recognized legal AI benchmark datasets, including COLIEE 2024 [36] (Canadian Supreme Court cases),
LegalBench [2] (common law system comprehensive benchmark), LeCaRDv2 [37] (Chinese criminal cases),
LexGLUE [38] (European and American multi-national legal texts), ECHR [39] (European Court of Human
Rights cases), and JEC-QA [40] (Chinese National Judicial Examination Q&A). The sampling process fol-
lows a strict three-dimensional stratified random sampling method: first, sample allocation by jurisdictional
balance, with common law systems (United States, Canada, United Kingdom) accounting for 35%, civil law
systems (China, European Union) accounting for 45%, and mixed/international law systems accounting for
20%, reflecting the actual distribution of global legal systems; second, ensuring legal domain diversity, cov-
ering 13 major classifications including intellectual property, contract law, tort law, labor law, property law,
corporate law, administrative law, civil law, international law, criminal law, family law, constitutional law,
and tax law, with each domain containing 30-50 samples; finally, ensuring task type completeness, includ-
ing four core tasks: case retrieval (30%), judgment prediction (25%), legal text entailment (25%), and legal
Q&A reasoning (20%). Samples are categorized by complexity into basic level (30%, single legal concepts),
intermediate level (50%, requiring 2-3 step reasoning), and advanced level (20%, complex legal disputes
requiring 4+ step reasoning), with complexity independently assessed by two law professors who resolve
disagreements through discussion. Ultimately, 500 pairs of high-quality Q&A pairs are extracted from the
above datasets to constitute the test set, ensuring balanced domain distribution and diverse case complexity.

Annotation Protocol and Quality Control: All reference answers and manual assessments are com-
pleted by legal professionals with qualifications. The annotation team includes 5 practicing lawyers (average
8.2 years of practice), 3 law professors, and 2 senior judges (12-15 years of adjudication experience). The
annotation process adopts a strict three-stage workflow: first, each sample is independently annotated by
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at least 3 experts to avoid anchoring effects; then, Inter-Annotator Agreement (IAA) is calculated, evalu-
ated using Fleiss’ Kappa coefficient and Intraclass Correlation Coefficient (ICC); finally, expert meetings
are organized to reach consensus on cases with consistency below the threshold (Fleiss’ Kappa ¡ 0.6). The
annotation manual provides detailed standards for five evaluation dimensions (legal accuracy, content com-
prehensiveness, citation standardization, logical rigor, professional expression), as well as boundary case
handling procedures and unified citation format specifications. IAA analysis based on 30 calibration sam-
ples shows Fleiss’ Kappa coefficients for the five dimensions range from 0.58-0.81 (overall average 0.69),
reaching “substantial agreement” level [41]; ICC(2,10) averages 0.96, indicating good reliability of collective
ratings by 10 raters; Cronbach’s α coefficient averages 0.91, confirming internal consistency of the assessment
tool. The legal accuracy and citation standardization dimensions exhibit higher consistency (κ=0.74 and
0.81), reflecting convergence of legal professionals’ judgments on objective legal standards; the logical rigor
dimension shows relatively lower consistency (κ=0.58), mainly stemming from subjective judgment differ-
ences among experts regarding reasoning path merits. Twelve percent of cases triggered collective discussion
mechanisms due to initial rating differences exceeding 20 points (100-point scale) and reached consensus.
These difficult cases were mainly concentrated in labor law and property law domains, reflecting the contex-
tualized nature of knowledge in these fields. Quality assurance mechanisms also include blind testing design
(raters unaware of sample sources and other rating results), regular calibration meetings (unified standards
every 100 samples annotated), and difficult case library construction (recording low-consistency cases and
consensus results as training materials), ensuring dataset quality and reliability.

To evaluate framework universality, this study selects four representative LLMs for experiments:
DeepSeek-R1-70B [42] (70B parameters), Qwen3-Next-80B [43] (80B parameters), Llama 4 Scout-109B [44]
(109B parameters), and gpt-oss-120b (120B parameters). Experiments adopt a frozen-parameter zero-shot
prompting paradigm, with all LLM pre-training parameters remaining unchanged, without any form of fine-
tuning, parameter-efficient fine-tuning (such as LoRA, Prefix-tuning), or continual learning. All experiments
are conducted in identical computational environments using two NVIDIA A100 (80GB) GPUs, ensuring
result fairness and comparability. Each model configuration runs 3 times on 500 test samples (random seeds:
42, 2024, 2025), reporting means and 95% confidence intervals. Performance analysis shows baseline con-
figuration average inference time is 2.3 seconds/query, complete configuration is 3.8 seconds/query, with
additional overhead mainly from knowledge graph retrieval and prompt construction processes.

4.3 Main Results

4.3.1 BLEU and ROUGE Metric Evaluation

We first assess framework performance in text generation quality using the widely adopted BLEU and
ROUGE metric families. Experiments are conducted on four representative models, with each model running
3 times to ensure result stability. Table 2 presents baseline versus complete configuration performance
comparisons across multiple n-gram granularities and recall dimensions, revealing systematic improvements
in text generation capabilities by the framework.

Table 2: Model performance comparison on BLEU and ROUGE metrics

Model
BLEU-1 BLEU-2 BLEU-3 BLEU-4

Baseline Complete Baseline Complete Baseline Complete Baseline Complete

DeepSeek-R1-70B 0.2806 0.5428 0.2154 0.4836 0.1749 0.4322 0.1461 0.3968

Qwen3-Next-80B 0.2632 0.6535 0.2050 0.5969 0.1669 0.5474 0.1395 0.5075

Llama 4 Scout-109B 0.2445 0.6247 0.1916 0.5619 0.1549 0.4887 0.1282 0.4427

gpt-oss-120b 0.2529 0.6070 0.1925 0.5468 0.1517 0.4959 0.1239 0.4580

ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1

Baseline Complete Baseline Complete Baseline Complete

DeepSeek-R1-70B 0.3823 0.6609 0.2497 0.5476 0.3453 0.6566

Qwen3-Next-80B 0.3790 0.7453 0.2481 0.6433 0.3438 0.7425

Llama 4 Scout-109B 0.3599 0.7442 0.2336 0.6302 0.3238 0.7437

gpt-oss-120b 0.3642 0.7059 0.2277 0.6060 0.3249 0.7031
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Fig. 3: Comprehensive comparison of BLEU and ROUGE metrics: average performance of baseline versus
complete configurations

As shown in Figure 3, the complete configuration (deep blue) surpasses the baseline configuration (light
gray) across all BLEU and ROUGE metrics. The BLEU-4 metric increased from 0.134 to 0.451 (gain of
0.317). This incremental improvement pattern from low-order to high-order n-gram metrics indicates that
the framework improves lexical selection accuracy and enhances the model’s ability to construct complex
syntactic structures. Synchronous ROUGE metric improvements confirm framework effectiveness: ROUGE-
1, ROUGE-2, and ROUGE-L reached 0.714, 0.607, and 0.711 respectively, with ROUGE-L F1 improving
from 0.334 to 0.711 (gain of 0.377). This multi-dimensional coordinated improvement indicates that gen-
erated texts maintain quality at local vocabulary and phrase levels and achieve improvements in global
structure and long-distance dependency relationships.

4.3.2 Key Legal Performance Metric Evaluation

We assess framework performance in core legal judgment capabilities using four key metrics: F1 score,
Exact Match (EM), Macro F1, and Micro F1. These metrics measure model capabilities in legal concept
identification, answer accuracy, and category balance from different perspectives. Table 3 presents statistical
evaluation results on 500 test samples, with each configuration running 3 times reporting mean ± standard
deviation.

Table 3: Statistical evaluation results of legal LLMs on key performance metrics∗∗∗

Metric Baseline Complete Absolute Gain Relative Gain 95% CI Cohen’s d

F1 Score 0.356±0.011 0.714±0.043 0.358 +0.358 [0.312, 0.406] 7.50

Exact Match 0.011±0.010 0.446±0.054 0.435 +0.435 [0.381, 0.489] 8.95

Macro F1 0.010±0.004 0.305±0.030 0.295 +0.295 [0.265, 0.325] 9.83

Micro F1 0.011±0.005 0.445±0.055 0.434 +0.434 [0.379, 0.489] 8.71

∗∗∗All metrics reached p < 0.001 significance level (paired t-test, n = 500, 3 runs)

Cohen’s d >7.5 indicates large effect size, 95% CI shows stable improvement

Cohen’s d calculated using pooled standard deviation of paired samples: d =
MComplete−MBaseline

SDpooled

Results presented in Table 3 reveal framework progress in core legal judgment capabilities. The F1 score
improvement (from 0.356 to 0.714) combined with narrow confidence interval [0.312, 0.406] confirms improve-
ment stability and reliability. The exact match metric improvement from near-zero baseline (0.011) to 0.446
(gain of 0.435) means the complete configuration can generate accurate legal answers for a substantial por-
tion of queries. Synchronous improvements in Macro F1 and Micro F1 (gains of 0.295 and 0.434 respectively)
indicate framework robustness in handling imbalanced legal categories, improving both common case type
performance and rare legal problem handling capabilities. Cohen’s d effect sizes all exceed 7.5, far greater
than the traditional “large effect” (0.8) standard, confirming practical significance of improvements.
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4.3.3 Calibration Error Analysis

Model calibration quality reflects consistency between prediction confidence and actual accuracy, crucial
for legal AI system trustworthiness. We adopt Expected Calibration Error (ECE) and Maximum Calibra-
tion Error (MCE) metrics to assess model self-awareness degree. Table 4 presents calibration performance
comparison of four models under baseline and complete configurations.

Table 4: Model calibration error comparison

Model
ECE MCE

Baseline Complete Baseline Complete

DeepSeek-R1-70B 0.2351 0.1978 0.2356 0.2956

Qwen3-Next-80B 0.2755 0.2785 0.2758 0.5766

Llama 4 Scout-109B 0.3052 0.1756 0.3053 0.1758

gpt-oss-120b 0.3107 0.3749 0.3166 0.9546

Llama 4 Scout-109B exhibits better calibration performance under complete configuration, with expected
calibration error decreasing from 0.3052 to 0.1756 (reduction of 0.1296). This improvement mainly benefits
from structured knowledge support provided by the framework—when models can access legal concept defi-
nitions and relationships, their assessment of prediction reliability also becomes more reasonable. In contrast,
gpt-oss-120b’s maximum calibration error increased from 0.3166 to 0.9546. In-depth analysis reveals this
phenomenon mainly occurs when handling rare legal categories; the model becomes overconfident about cer-
tain edge cases after obtaining knowledge enhancement, suggesting we need to set differentiated confidence
calibration strategies for different model architectures when deploying legal AI systems.

4.3.4 Domain-Specific Performance Analysis

To evaluate framework adaptation capabilities across different legal domains, we conduct tests on 13 major
legal classifications. Each domain contains 30-50 carefully selected cases, covering from structured European
Union (EU) law to contextually rich labor law. Table 5 presents baseline versus complete configuration EM
and F1 score comparisons across domains, revealing framework domain-specific performance characteristics.
The performance shown here is for a single best model (Qwen3-Next-80B) across domains to more clearly
reflect inter-domain differences.

As shown in Figure 4, the heatmap displays framework performance improvement patterns across 13
legal domains through color depth, with gradients from light yellow (low performance) to deep blue (high
performance) reflecting complete configuration improvement effects across all domains. Vertical compari-
son of the heatmap (Baseline EM vs Complete EM, Baseline F1 vs Complete F1) shows a consistent color
deepening trend, confirming framework universal effectiveness. EU law and intellectual property law present
deeper blue under complete configuration (Complete EM: 0.714 and 0.844 respectively, Complete F1: 0.886
and 0.829 respectively), which relates to these two domains’ knowledge representation characteristics: EU
law benefits from its unified legal framework, with this structure fitting with this study’s three-layer knowl-
edge graph architecture; intellectual property law’s success stems from its relatively independent conceptual
system. In contrast, labor law and property law show improvement but colors remain relatively lighter,
with labor law EM maintaining 0.125 unchanged, reflecting this domain’s contextualized knowledge char-
acteristics, involving specific employment relationships, industry practices, and local regulations difficult to
fully capture through static knowledge graphs. Despite these domain differences, the framework achieves
positive improvements across all 13 domains, with average F1 score improving from 0.366 to 0.700 (gain
of 0.334), validating broad applicability of the multi-dimensional knowledge graph and prompt engineering
combination strategy.

4.3.5 Cross-Jurisdictional Performance Analysis

Jurisdictional differences in legal systems are key challenges for global legal AI applications. We test frame-
work adaptation capabilities across 8 different types of jurisdictions, including common law systems, civil
law systems, mixed law systems, and religious law systems. Table 6 presents citation pattern recognition
accuracy and model confidence across different jurisdictional types, revealing framework understanding
capabilities of legal source diversity.
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Table 5: Performance comparison across different legal domains (Qwen3-Next-80B model)†

Legal Domain EM F1

Baseline Complete Baseline Complete

EU Law 0.373 0.714 0.416 0.886

Intellectual Property 0.410 0.844 0.582 0.829

General Legal 0.265 0.455 0.396 0.768

Corporate Law 0.212 0.625 0.305 0.757

Administrative Law 0.121 0.563 0.309 0.748

Civil Law 0.214 0.586 0.325 0.729

International Law 0.132 0.355 0.333 0.701

Criminal Law 0.183 0.424 0.305 0.675

Family Law 0.282 0.509 0.276 0.663

Constitutional Law 0.026 0.359 0.354 0.659

Tax Law 0.123 0.443 0.419 0.598

Employment Law 0.125 0.125 0.433 0.571

Property Law 0.044 0.167 0.303 0.523

†This table shows single best model performance across domains. Table 3 shows four-model

averages, where baseline EM is lower mainly because the other three models approach zero in most domains.

Fig. 4: EM and F1 score heatmap across legal domains: baseline versus complete configuration comparison

Citation type distribution reflects characteristics of each legal system: the United States and EU primarily
rely on case law, embodying the core position of the precedent binding principle in case law systems; the
UK and South Africa emphasize statutes, reflecting recent statutory reform trends in these jurisdictions;
Germany and India more frequently cite constitutional provisions, embodying the importance continental
law countries place on fundamental law. South Africa achieves high confidence of 0.965, possibly related to
that country’s mixed legal system characteristics—combining Roman-Dutch law, English common law, and
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Table 6: Citation pattern and confidence analysis across jurisdictional types

Jurisdictional System Type Primary Citation Type Average Confidence

Common Law (US Federal) Case 0.945

Common Law (UK) Statute 0.917

Civil Law (Germany) Constitution 0.914

Civil Law (EU) Case 0.933

Mixed Law (India) Constitution 0.950

Mixed Law (South Africa) Statute 0.965

Local Regulations (US State) Regulation 0.892

Religious Law Doctrine 0.927

indigenous customary law provides rich association paths for knowledge graphs. Overall average confidence of
0.924 confirms framework cross-jurisdictional adaptability, valuable for handling cross-border legal disputes
and comparative law research.

4.3.6 Ablation Experiment Analysis

To systematically verify relative contributions of framework technical components, we design five ablation
configurations, each removing or replacing one key component. Experiments are conducted on four represen-
tative models, with each configuration running 3 times taking averages. Table 7 presents detailed ablation
experiment results, quantifying each component’s impact on overall performance.

Fig. 5: Visualization of component impact in ablation experiments: comparison of average F1 decline
magnitude

As shown in Figure 5, ablation experiments systematically reveal the relative contributions and collabora-
tive mechanisms of the technical components. Removing reasoning guidance (No Reasoning) has the largest
performance impact, causing average F1 to decline by 0.051 points, with this decline more pronounced on
complex legal disputes requiring multi-step reasoning, validating the core role of legal reasoning guidance in
complex legal dispute analysis. Removing iterative optimization (No Iterative Opt.) causes F1 to decline by
0.039 points and overall performance to decline 0.053, indicating dynamic quality feedback mechanisms are
important for improving output quality. Removing path reasoning (No Path Inference) causes F1 to decline
by 0.032 points, with more impact on EM (four-model average decrease of approximately 0.090), confirming
the value of knowledge graph structural information in discovering implicit legal associations. Static weights
cause Macro F1 to decline by 0.018 points, revealing the importance of dynamic weight mechanisms when
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addressing imbalanced legal domain distributions—static weights perform reasonably in high-frequency cat-
egories but show performance declines in low-frequency categories. Although flattened structure (Flattened)
retains all components, performance still declines by 0.029 points. This finding emphasizes the importance of
hierarchical architecture itself as a “meta-component”—the three-stage design simulates human legal expert
cognitive processes of “clarifying problem scope → retrieving relevant knowledge → conducting logical rea-
soning.” Overall, the collaborative effects of components constitute framework complete performance, with
removal of any component leading to performance declines.

4.3.7 Error Type Distribution Analysis

To understand framework improvement mechanisms and remaining challenges, we classify errors in 500
test samples. Using manual annotation, two legal professionals independently label each error type, with
disagreement cases reaching consensus through discussion. Table 8 presents the distribution changes of 9
error types under baseline and complete configurations, with each sample potentially containing multiple
error types.

Table 8: Model error type distribution comparison (%)—manual annotation of 500 samples

Error Type
DeepSeek-R1-70B Qwen3-Next-80B Llama 4 Scout-109B gpt-oss-120b

B C B C B C B C

Over-specification 63 22 74 19 77 7 72 17

Factual error 25 24 23 17 24 28 27 18

Incomplete answer 25 19 21 13 19 23 22 18

Irrelevant content 24 0 24 2 31 0 34 0

Conceptual error 4 9 4 6 4 10 4 8

General error 7 12 7 16 6 13 5 15

Logical error 10 11 12 7 11 9 11 6

Scope error 8 1 11 2 14 0 13 1

Termination error 3 1 4 1 7 0 8 1

Complete answer 0 0 0 1 0 1 0 3

B = Baseline, C = Complete configuration

Error distribution changes reveal framework improvement mechanisms and limitations. The reduction
in “over-specification” errors (average from 72% to 16%) is a notable improvement. This error manifested
in baseline configurations as incorrectly limiting general legal principles to specific situations, whereas the
framework helps models grasp conceptual abstraction levels through three-layer knowledge graph architec-
ture. The reduction in “irrelevant content” errors (three models to 0%) validates the boundary constraint
function of the task definition layer. However, the increase in “conceptual errors” (average from 4% to 8%)
reveals a noteworthy phenomenon—when models obtain more legal knowledge, they may produce over-
inference when handling concepts with ambiguous boundaries, suggesting we need more precise annotation
of concept boundaries and application conditions in knowledge graphs.

4.3.8 Computational Efficiency Analysis

Actual deployment of legal AI systems needs to balance performance improvements with computational
costs. We measure inference time, response length, and memory usage under different configurations to
evaluate framework computational efficiency. Experiments are conducted on two NVIDIA A100 (80GB)
GPUs, with each configuration tested 100 times taking averages. Table 9 presents baseline versus complete
configuration comparisons in computational efficiency dimensions.

The complete configuration improves legal analysis quality while reducing response length (average
word count from 30.72 to 10.01, a reduction of 20.71 words). This “concise yet precise” characteristic
stems from framework multiple optimization mechanisms—precise knowledge retrieval eliminates tentative
expressions in baseline models. When models are uncertain about legal concepts, they often use lengthy
descriptive language to avoid risks, whereas accurate knowledge support enables direct use of professional
terminology. For example, baseline configurations might generate: “According to relevant legal provisions,
civil liability may be involved, and multiple factors need to be considered...” (lengthy but vague); whereas
complete configurations directly point out: “Constitutes tort, should bear damages liability (Civil Code
Article 1165)” (precise citation). From a computational cost perspective, complete configuration inference
time increases from 2.3s to 3.8s (increase of 1.5s), but F1 score improves by 0.358, with efficiency ratio
reaching 1.53, indicating performance improvements exceed computational cost increases in magnitude.
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Table 9: Computational complexity analysis of different model configurations

Model
Answer Length (words) Character Count

Baseline Complete Baseline Complete

DeepSeek-R1-70B 35.95 7.79 225.13 46.78

Qwen3-Next-80B 30.54 9.56 194.13 58.30

Llama 4 Scout-109B 30.05 12.66 185.49 76.71

gpt-oss-120b 26.32 10.02 163.37 60.15

This balance between computational efficiency and quality improvement makes the framework valuable for
practical deployment.

4.3.9 Legal Content Quality Expert Assessment

Besides automated metrics, legal professional quality assessment requires deep participation from domain
experts. We invite 10 legal experts (5 practicing lawyers, 3 law professors, 2 senior judges) to evaluate
professional quality of system-generated content. Assessment adopts blind testing, with each case indepen-
dently scored by at least 3 experts then averaged. Table 10 presents evaluation results for three core legal
professional dimensions, with all dimensions using 100-point scoring.

Table 10: Expert evaluation results on professional content quality (100-point scale)∗∗

Dimension Baseline Complete Gain t-stat p-value

Citation Accuracy 56.25±17.84 75.25±6.95 +19.00 4.24 <0.01∗∗

Reasoning Soundness 60.75±17.18 80.50±7.51 +19.75 4.57 <0.01∗∗

Conclusion Reliability 58.75±16.48 77.00±6.68 +18.25 4.42 <0.01∗∗

Overall Score 58.58±16.83 77.58±7.05 +19.00 4.51 <0.01∗∗

∗∗All dimensions reached p < 0.01 (paired t-test, n = 30 cases, 10 experts).

Complete configuration SD reduced (avg. from 17.1 to 7.0), indicating more stable output.

From a professional legal perspective, the complete configuration achieves improvements across all
dimensions. Citation accuracy improvement of 19.00 points (from 56.25 to 75.25) reflects the value of
multi-dimensional knowledge graphs in legal literature management. The framework improves legal code
errors, timeliness errors, and jurisdictional confusion typical of baseline models through triple mecha-
nisms of code matching, timeliness marking, and jurisdictional identification. Reasoning soundness obtains
higher improvement magnitude (+19.75 points, reaching 80.50), embodying the effect of three-stage prompt
engineering. Complete configuration legal reasoning exhibits three professional characteristics: relatively
complete argumentation chains, relatively clear logical connections, and multi-perspective consideration, rel-
atively consistent with legal professional writing standards such as the IRAC analysis framework. Notably,
the complete configuration exhibits reduced standard deviation across all dimensions (average from 17.1 to
7.0), indicating the framework improves average quality and enhances output stability and predictability.

4.4 Manual Assessment

To evaluate framework performance in actual legal analysis scenarios, we carefully select 30 representative
cases from 500 test samples for in-depth manual expert assessment, covering major legal domains such
as contract disputes, tort liability, intellectual property disputes, and labor disputes. These 30 cases are
filtered through three dimensions: complexity scoring, domain coverage, and practical relevance to ensure
assessment sample representativeness. Assessment adopts the Quality Understanding Evaluation for Systems
and Text (QUEST) framework, which includes five core dimensions: information quality, understanding and
reasoning, expression style and role, safety and harm, trust and confidence. Each dimension uses 100-point
scoring, independently assessed by 10 legal domain experts (5 practicing lawyers, 3 law professors, 2 senior
judges). Table 11 presents baseline versus complete configuration comprehensive performance on QUEST
framework dimensions.
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Table 11: Model scores on legal QUEST framework (100-point scale)

Metric
DeepSeek Qwen3 Llama4 gpt-oss

B C B C B C B C

Information Quality 33 70 76 86 70 84 68 82

Understanding & Reasoning 35 68 70 83 68 81 66 80

Expression Style & Role 40 65 68 78 65 77 63 75

Safety & Harm 64 72 71 80 68 79 67 78

Trust & Confidence 32 62 65 76 63 75 61 73

B = Baseline, C = Complete configuration

QUEST framework evaluation results show the complete configuration achieves improvements across
all dimensions. Information quality dimension improvement is notable, with DeepSeek-R1 improving from
33 points to 70 points (gain of 37 points), and Qwen3-Next reaching 86 points—legal experts point out
that the complete configuration identifies the core of legal issues and systematically analyzes related legal
elements. The understanding and reasoning dimension reflects model legal thinking depth, with all models
under complete configuration scoring above 68 points. Expert reviewers believe the complete configuration
exhibits analytical capabilities approaching junior lawyers, identifying surface legal issues and discovering
potential legal risks and remedies. Improvements in the safety and harm dimension (average approximately
10 points) are important—the framework reduces risks of providing incorrect or outdated legal advice
through knowledge graph timeliness management and jurisdictional identification. Trust and confidence
dimension improvements (average from 55.3 points to 71.5 points, gain of 16.2 points) are comprehensive
manifestations of other dimension improvements. Complete configuration analysis has correct conclusions
and has relatively transparent reasoning processes and relatively sufficient arguments, enabling people to
understand and verify its legal logic.

4.4.1 Inter-Rater Reliability Analysis

To verify the reliability and scientific rigor of manual assessments, we conduct systematic reliability analysis
of 10 legal expert ratings. Multiple statistical metrics are used to evaluate inter-rater consistency degrees,
including Fleiss’ κ coefficient (for multi-rater classification consistency), ICC (for continuous rating consis-
tency), and Cronbach’s α coefficient (for internal consistency). Table 12 presents detailed reliability analysis
results for five evaluation dimensions.

Table 12: Legal expert inter-rater reliability analysis

Dimension Fleiss’ κ ICC(2,1) ICC(2,10) Cronbach’s α Avg. Abs. Diff.

Information Quality 0.74 0.76 0.97 0.94 7.8

Understanding & Reasoning 0.65 0.68 0.96 0.89 11.3

Expression Style & Role 0.58 0.61 0.94 0.85 13.7

Safety & Harm 0.81 0.79 0.97 0.95 6.2

Trust & Confidence 0.69 0.72 0.96 0.91 9.5

Overall Average 0.69 0.71 0.96 0.91 9.7

Reliability analysis validates the scientific rigor and reliability of manual assessments. The overall
mean Fleiss’ κ coefficient of 0.69 reaches “substantial agreement” level (according to Landis & Koch stan-
dards [41]), indicating different experts’ judgments of system performance have good consistency. The
“safety and harm” dimension exhibits higher inter-rater consistency (κ=0.81), reflecting relatively objective
and unified standards for legal professionals’ judgments of potential risks. ICC analysis shows improve-
ment from single rater to rater group reliability—ICC(2,1) of 0.71 indicates single rater ratings have good
reliability, while ICC(2,10) reaching 0.96 indicates collective ratings by 10 raters have reliability. Average
absolute difference of 9.7 points (approximately one rating level) is within reasonable range, with 12% of
cases triggering collective discussion mechanisms due to rating differences exceeding 20 points and reaching
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consensus through discussion. These comprehensive metrics support the credibility of Table 11 results and
confirm that framework performance improvements are relatively stable rather than products of rating bias
or random factors.

4.4.2 Case Study Analysis: Liebeck v. McDonald’s Hot Coffee Burn Case

To validate the effectiveness of the framework proposed in this study in handling actual legal cases, we select
the Liebeck v. McDonald’s hot coffee burn case as a test case. This case involves multiple complex legal
issues such as liability determination, damage calculation, and judicial discretion, making it an appropriate
sample for evaluating legal analysis depth. Three configurations exhibit different analytical capabilities when
handling this case, with differences presented in Figure 6.

The comparative analysis shown in Figure 6 demonstrates capability differences among three configura-
tions when handling the Liebeck v. McDonald’s hot coffee burn case. The baseline configuration response is
limited to basic facts and simple data presentation, providing compensation amount information ($200,000
compensatory damages and $2.7 million punitive damages, later reduced by judge to $480,000), but lacking
explanation of legal principles and reasoning processes. The traditional configuration adds liability allo-
cation ratios (McDonald’s 80% liability, Liebeck 20% liability) and contextualized explanation of punitive
damage amounts (equivalent to McDonald’s two days of coffee sales) based on the baseline, but still does not
analyze legal logic chains in depth. In contrast, the complete configuration provides relatively comprehen-
sive legal analysis, covering specific application mechanisms of comparative negligence principles, legal basis
for single-digit ratio review principles (judge adjusted punitive damages to approximately 3 times compen-
satory damages ratio), reasoning value of key evidence (over 700 complaint records and coffee temperature
data), procedural evolution of case resolution methods, and related constitutional controversy issues. From
a legal analysis structure perspective, complete configuration responses conform to the classic IRAC analy-
sis framework in English-American legal memoranda; from a content depth perspective, they reveal the role
of habituation evidence in jury “reflective equilibrium” decision-making processes, as well as case evolution
trajectories from “first-order outcomes” (specific rulings) to “second-order outcomes” (precedent impacts).
Legal expert assessments confirm that the complete configuration provides relatively reasonable legal appli-
cation analysis and exhibits understanding of judicial decision-making logic, validating the effectiveness
and adaptability of this study’s three-stage prompt structure integrated with multi-dimensional knowledge
graph framework in handling complex legal cases.

5 Conclusion and Future Directions

This study proposes a framework for legal dispute analysis integrating prompt engineering with multi-
dimensional knowledge graphs to address the limitations of legal language models. This framework
establishes a three-stage hierarchical prompt structure (including task definition, knowledge background,
and reasoning guidance components) working collaboratively with a three-layer knowledge graph architec-
ture to form a closed-loop system for legal analysis. Experimental validation confirms framework effectiveness
across multiple dimensions, with complete configurations demonstrating improvements in both automated
metrics and expert assessments. The framework achieves improvements in text generation quality (BLEU-4
gain of 0.317, ROUGE-L F1 gain of 0.377), enhanced legal judgment capabilities (F1 score gain of 0.358,
Macro F1 and Micro F1 gains of 0.295 and 0.434 respectively), and improved legal content professional
performance (citation accuracy improved 19 points, reasoning soundness improved 20 points, conclusion
reliability improved 18 points, all on 100-point scale).

Future research will expand this framework in three main directions to adapt to broader legal application
scenarios. First, cross-lingual legal dispute analysis capabilities will be developed to address cross-national
legal applications and jurisdictional differences. Second, integrating multi-modal legal evidence analysis will
enhance system capabilities in handling various document formats, including visual and audio evidence.
Finally, improving legal reasoning explainability will enhance system analysis process transparency and
trustworthiness, contributing to research on AI accountability in legal contexts. Regarding reasoning quality
assessment, the cognitive fidelity evaluation framework proposed by Tang et al. [45] provides reference for
evaluating this system’s reasoning quality; regarding text generation optimization, the keyword planning and
retrieval-augmented methods proposed by Tokala and Hernandez [46] can combine with this framework’s
prompt engineering module to improve generation quality. Exploration of these research directions will
advance legal AI systems toward more intelligent, professional, and trustworthy development.
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Fig. 6: Legal LLM case analysis comparison: baseline version vs. traditional version vs. complete version
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