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Abstract

Background: Brain tumor segmentation requires precise delineation of hier-
archical structures from multi-sequence MRI. However, existing deep learning
methods primarily rely on visual features, showing insufficient discriminative
power in ambiguous boundary regions. Moreover, they lack explicit integration of
medical domain knowledge such as anatomical semantics and geometric topology.
Methods: We propose a knowledge-guided framework, Synchronized Tri-modal
Prior Fusion (STPF), that explicitly integrates three heterogeneous knowl-
edge priors: pathology-driven differential features (T1ce-T1, T2-FLAIR, T1/T2)
encoding contrast patterns, unsupervised semantic descriptions transformed
into voxel-level guidance via spatialization operators, and geometric constraints
extracted through persistent homology analysis. A dual-level fusion architecture
dynamically allocates prior weights at the voxel level based on confidence and
at the sample level through hypernetwork-generated conditional vectors. Fur-
thermore, nested output heads structurally ensure the hierarchical constraint
ETCTCCWT.

Results: STPF achieves a mean Dice coefficient of 0.868 on the BraTS 2020
dataset, surpassing the best baseline by 2.6 percentage points (3.09% relative
improvement). Notably, five-fold cross-validation yields coefficients of variation
between 0.23% and 0.33%, demonstrating stable performance. Additionally, abla-
tion experiments show that removing topological and semantic priors leads to
performance degradation of 2.8% and 3.5%, respectively.

Conclusions: By explicitly integrating medical knowledge priors—anatomical
semantics and geometric constraints—STPF improves segmentation accuracy in
ambiguous boundary regions while demonstrating generalization capability and
clinical deployment potential.
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1 Introduction

Gliomas account for 80% of primary adult brain tumors[l, 2]. Notably, high-grade
glioma patients face a poor prognosis, with median survival of less than two years
and five-year survival rates below 10%. Consequently, precise tumor segmentation
is important for personalized treatment, directly impacting critical clinical decisions
such as surgical planning, radiation therapy target delineation, and treatment efficacy
assessment[3, 4]. To achieve this precision, multi-sequence MRI provides complemen-
tary tissue contrast information, thereby establishing a multi-modal data foundation
for fine delineation of tumor sub-regions[5]. However, the tissue heterogeneity, irregular
morphology, and ambiguous boundaries of brain tumors, combined with the manda-
tory nested hierarchical relationship between enhancing tumor (ET), tumor core (TC),
and whole tumor (WT) (ETCTCCWT), make automatic segmentation a major chal-
lenge in computational neuro-oncology. In response to this challenge, the Brain Tumor
Segmentation (BraTS) challenge series[6—8] has continuously advanced this field,
expanding from initial glioma segmentation to meningioma[9], brain metastases[10],
and pathology image analysis[11].

Deep learning methods have achieved progress in brain tumor segmentation. In
particular, advanced architectures represented by nnU-Net[12] and Swin UNETR[13]
have reached expert-level performance on BraTS challenges through adaptive configu-
ration and global context modeling. Recent methods include Mamba-based long-range
sequence modeling[14, 15], diffusion model enhancement[16, 17], hybrid masked
modeling[18], and hierarchical context interaction[19]. Nevertheless, these methods
focus primarily on architectural innovations in visual feature space and represent
essentially data-driven visual learning. Consequently, they exhibit three systematic
limitations: First, insufficient discriminative capability in regions with ambiguous
boundaries and unreliable signal intensity, as highlighted by HD distance evalua-
tion studies[20] and the Metrics Reloaded framework[21]. Second, network outputs
may contain topologically unreasonable structures, thereby producing fatal defects
in downstream clinical applications. Third, insufficient utilization of medical domain
knowledge—clinicians comprehensively consider semantic information such as anatom-
ical location, morphological features, and growth patterns during diagnosis, as well as
geometric constraints that tumors spread along specific pathways while maintaining
particular connectivity. These clinical reasoning processes embody knowledge priors
that remain underexploited in current data-driven approaches.

The development of vision-language models (VLMs) provides new pathways
for integrating semantic knowledge priors. For instance, foundation models like
BiomedCLIP[22] demonstrate zero-shot and few-shot learning capabilities through
large-scale image-text pair pretraining. Similarly, BioViL-T[23] proves that even lim-
ited medical text can improve visual representation learning. However, integrating



semantic knowledge into dense prediction tasks still faces three obstacles: First, medi-
cal datasets generally lack high-quality text annotations, thus requiring unsupervised
semantic generation pipelines. Second, medical semantics require precise anatomical
and pathological terminology rather than vague descriptions. Third, existing methods
treat semantic embeddings as global conditional signals, thereby lacking mechanisms
to map global descriptions to voxel-level spatial distributions. Attempts by Con-
TEXTual Net[24] and SEG-SAM]25] indicate that semantic guidance can improve
segmentation performance; nevertheless, more comprehensive multi-modal prior fusion
is still needed. Similarly, while persistent homology theory[26, 27] provides tools for
capturing geometric structure priors, how to transform abstract topological features
into collaboratively optimizable spatial representations remains an open question.

To address these challenges, we propose a knowledge-guided framework, Synchro-
nized Tri-modal Prior Fusion (STPF), which achieves synchronized interaction of three
heterogeneous knowledge priors—visual, semantic, and topological—at each decoder
layer. Note that the ”tri-modal prior” in this paper refers to three types of heteroge-
neous knowledge priors (visual pathology patterns, semantic anatomical descriptions,
topological geometric constraints), while the input data consists of four-sequence
MRI (T1, Tlce, T2, FLAIR). Beyond improving accuracy on challenging glioma seg-
mentation benchmarks, STPF is designed with robustness in mind: by grounding
prior information in anatomical location, coarse morphology, and topological struc-
ture rather than scanner-specific intensity statistics, it introduces an inductive bias
that is largely invariant to changes in contrast or vendor. Core contributions include:

(1) Knowledge-driven multi-modal prior generation and spatialization: We explic-
itly construct pathology-driven differential features as visual knowledge priors. Addi-
tionally, we generate standardized clinical descriptions through unsupervised anomaly
detection as semantic knowledge priors. Moreover, we extract geometric constraints
using persistent homology as topological knowledge priors, and transform all three-way
priors into voxel-level distributions through spatialization operators.

(2) Dual-level adaptive prior fusion architecture: At the voxel level, we dynamically
allocate tri-modal prior weights based on confidence. Furthermore, at the sample level,
we uniformly adjust decoder features through hypernetwork-generated modulation
parameters.

(3) Unified prior fusion and structured output: We transform heterogeneous knowl-
edge priors into logit space for energy superposition decision-making. Simultaneously,
we structurally guarantee the hierarchical relationship ETCTCCWT through nested
output heads.

2 Related Work

2.1 Deep Learning for Brain Tumor Segmentation

Since its launch in 2012, the BraTS challenge has established standardized eval-
uation protocols for brain tumor segmentation, defining three hierarchical regions:
whole tumor (WT), tumor core (TC), and enhancing tumor (ET)[6]. Early methods,
represented by 3D U-Net[28], capture multi-scale context through encoder-decoder
structures. Subsequently, the nnU-Net[12] proposed by Isensee et al. achieves a mean



Dice coefficient of 0.850 on BraT$S 2020 through adaptive preprocessing and dynamic
configuration. Following this, Myronenko[29] introduces autoencoder regularization,
while SegResNet[30] enhances gradient flow through residual connections. Further-
more, inspired by Transformer success in natural language processing, Hatamizadeh
et al. propose UNETRI31], introducing pure Transformer encoders to 3D segmenta-
tion. Building upon this, Tang et al.’s Swin UNETR][13] achieves 0.856 on BraTS
2021 through hierarchical Shifted Window mechanisms. Meanwhile, TransBTS[32]
and TransUNet[33] explore hybrid CNN-Transformer architectures, and SwinBTS[34]
further optimizes window attention mechanisms.

Recent work exhibits more diverse innovation paths. For example, CKD-
TransBTS[35] introduces cross-knowledge distillation, while FDiff-Fusion[17] combines
diffusion models and fuzzy learning. Moreover, the SegMamba series[14, 15] achieves
efficient long-range modeling through state space models, and Diff-UNet[16] embeds
diffusion processes into segmentation frameworks. Although these methods achieve
progress in performance metrics, they mainly focus on architectural-level innovations
with insufficient integration of medical domain knowledge priors. Consequently, these
pure data-driven methods show decreased discriminative capability in ambiguous
boundary regions, optimize through soft loss functions, and lack explicit constraints
on topological rationality and hierarchical consistency. Semi-supervised and weakly-
supervised methods[36—40] demonstrate potential in data-limited scenarios but still
require stronger prior constraints.

2.2 Semantic Knowledge Integration

The development of vision-language models introduces a semantic understanding
dimension to medical image analysis. Specifically, CLIP[41] demonstrates zero-shot
classification capabilities through contrastive learning on 400 million image-text pairs.
Building on this foundation, BiomedCLIP[22] is pretrained on 15 million biomedical
image-text pairs from PubMed Central, specifically optimized for medical terminol-
ogy. As a result, it outperforms general models in report generation and disease
classification tasks. Similarly, BioViL-T[23] proves that even limited medical text
can improve visual representations. Regarding practical applications, ConTEXTual
Net[24] is pioneering work introducing textual information into segmentation tasks,
combining U-Net and T5-Large language models, fusing text and visual features
through cross-attention, and achieving a Dice coeflicient of 0.716 in pneumothorax
segmentation. Likewise, SEG-SAM]25] integrates LLM-generated descriptions into the
SAM framework.

However, integrating semantic knowledge priors into dense prediction tasks still
faces three challenges: First, mainstream datasets lack text annotations and lack end-
to-end automation pipelines. Second, medical semantics require precise anatomical
and pathological terminology rather than vague descriptions. Third, existing meth-
ods treat semantic embeddings as global conditional signals, thereby lacking mapping
mechanisms for voxel-wise spatial distributions. Attempts by ConTEXTual Net and
SEG-SAM indicate that semantic guidance can improve segmentation performance;
however, the granularity gap between global semantic descriptions and dense pre-
diction tasks remains unresolved. The spatialization operator proposed in this paper



transforms global semantic tokens into spatial representations at the same resolution
through probability maps and distance field transforms, thereby enabling semantic
knowledge priors to function at each voxel location.

2.3 Topological and Geometric Constraints

Topological data analysis provides geometric constraint tools for medical image
segmentation. Specifically, persistent homology theory[26] captures multi-scale topo-
logical features of data by analyzing connectivity changes at different thresholds. The
topological loss function proposed by Clough et al.[26] constrains network output
connectivity through Betti numbers, reducing unreasonable isolated regions in car-
diac segmentation tasks. Furthermore, a review of topological descriptors in medical
imaging[27] indicates that geometric knowledge priors are important for improving
anatomical rationality of segmentation. In addition, graph neural networks[42] pro-
vide another approach to modeling spatial relationships, with the multi-class graph
reasoning method at MICCAT 2024[43] demonstrating GNN potential in brain tumor
segmentation.

However, existing methods mainly apply topological constraints as post-processing
steps or loss function terms, thereby lacking deep fusion with visual features. Trans-
forming abstract topological knowledge priors into collaboratively optimizable spatial
representations remains an open question. This paper processes skeleton graphs
extracted by persistent homology through graph attention networks[44] and designs
spatialization operators to map abstract graph structures to dense spatial represen-
tations, thus achieving voxel-wise interaction between topological priors and visual
features. Meanwhile, unsupervised anomaly detection methods provide a technical
foundation for the semantic generation module in this paper. ASC-Net[45] achieves
unsupervised anomaly segmentation through adversarial training, Mahalanobis dis-
tance methods[46] detect brain anomalies using statistical distributions, and diffusion
model-based contrastive analysis[47] demonstrates generative model potential in
anomaly detection, thereby enabling the system to generate standardized clinical
descriptions without manual annotation.

2.4 Multi-modal MRI Feature Fusion

Effective utilization of multi-sequence MRI is key to precise brain tumor segmen-
tation. Different sequences exhibit differential sensitivity to pathological tissues:
T1-weighted provides anatomical structure, T1 contrast-enhanced highlights blood-
brain barrier disruption regions, T2-weighted detects edema and cystic changes,
and FLAIR sequence separates peritumoral edema by suppressing cerebrospinal
fluid signals. Early fusion strategies concatenate multi-sequences as multi-channel
inputs, implicitly assuming networks automatically learn cross-modal relationships;
however, simultaneously learning intra-modal features and inter-modal relationships
increases optimization difficulty. To address this, MAMCI[48] dynamically weights
different sequences through channel attention, NestedFormer[49] introduces modality-
sensitive gating to implement cross-modal feature propagation at different scales, and
CMAF-Net[50] designs cross-modal attention fusion mechanisms.



However, these methods treat each sequence as an independent information source,
insufficiently considering the pathological knowledge embedded in inter-sequence dif-
ferential features. Medical imaging indicates that inter-sequence contrast patterns
directly correspond to specific pathological features: Tlce-T1 difference highlights
contrast agent leakage regions, T2-FLAIR difference separates free water and bound
water to delineate whole tumor boundaries, and T1/T2 ratio enhances necrotic tis-
sue contrast. Furthermore, existing fusion strategies treat different modalities as equal
partners, ignoring essential differences in prior representations: visual modality is
dense spatial features, semantic modality is sparse global descriptions, and topological
modality is abstract graph structures. The dual-level fusion architecture proposed in
this paper dynamically allocates fusion weights through confidence estimation, thereby
adaptively relying on the most reliable knowledge prior in different spatial locations
and pathological scenarios.

3 Method

This paper proposes a knowledge-guided brain tumor segmentation framework based
on synchronized tri-modal prior fusion (STPF), which performs synchronized col-
laborative decision-making on image-enhanced features, semantic descriptions, and
topological constraints at each decoder layer. As shown in Figure 1, the method starts
from four-sequence MRI data and extracts knowledge priors through three parallel
paths. The visual path constructs a multi-scale feature pyramid based on multi-modal
difference maps encoding pathological knowledge. Simultaneously, the semantic path
generates structured descriptions through anomaly detection, representing anatomical
knowledge. In parallel, the topological path extracts geometric constraints using per-
sistent homology analysis, capturing morphological knowledge. After fusing three-way
priors into sample-level conditional vectors, they are input to a hypernetwork to gen-
erate modulation parameters. The decoder implements dual-level prior fusion: at the
global level through sample-level modulation to unify feature representations, and at
the local level dynamically allocating fusion weights based on confidence at each voxel
location. Finally, the unified prior fusion module transforms all knowledge priors into
the same logit space for negotiation, coordinated with nested output heads ensuring
hierarchical inclusion relationships, employing stick-breaking parameterization[51].

3.1 Multi-modal Prior Generation

3.1.1 Visual Enhancement Modality: Multi-modal Differential
Feature Construction as Pathological Knowledge Prior

In medical image analysis, contrast information between different MRI sequences
contains lesion features representing pathological knowledge. Based on standard four-
sequence MRI (T1, Tlce, T2, FLAIR), this paper explicitly constructs inter-sequence
differential features to encode domain-specific pathological patterns. Unless otherwise
stated, all experiments assume the availability of these four sequences at both train-
ing and inference time, which is consistent with the standard BraTS protocol and
allows us to isolate and analyse the effect of prior-guided fusion without conflating
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Fig. 1 STPF framework diagram. The left encoder extracts visual features from multi-sequence
MRI, obtaining z_vis at the bottom. The purple topological path generates topological tokens T’
via GAT and obtains z_topo through spatialization. The pink semantic path includes candidate
region generation and attribute extraction, obtaining semantic tokens S through Encoder and z_sem
through spatialization. Three-way knowledge priors are fused at the bottom through Gate and sent
to global level-sample-level modulation. The yellow-green section performs Attention on 7', S, V,
then completes voxel-level fusion through spatialization and voxel-level adaptive fusion (estimating
weights via ¢v, ¢s, ¢¢), progressively restoring on the right side and outputting segmentation results.

it with missing-modality robustness. To capture features from different regions, we
define three differential channels as follows:

Denhance =

Dedema = T2 — FLAIR

Dnecrosis =

Tl —T1
Tl +¢€

T1
T2 +¢€

(Enhancement difference)
(Edema difference)

(Necrosis contrast)

Specifically, the enhancement difference captures contrast-enhanced regions cor-
responding to enhancing tumor (ET). Meanwhile, the edema difference uses T2 and
FLAIR signal differences to separate edema regions, thereby locating whole tumor
(WT) extent. Furthermore, the necrosis contrast utilizes T1 and T2 complementarity



to highlight necrotic regions, thus assisting tumor core (TC) segmentation. Collec-
tively, these differential features explicitly encode radiological knowledge about tumor
pathology.

Following logarithmic compression and quantile clipping, difference maps are nor-
malized to the [0,1] interval, thereby expanding the original four channels to a
seven-channel enhanced representation. Subsequently, a dual-branch encoder processes
the original four-sequence channels and differential three channels separately: the orig-
inal branch captures basic anatomical structure and signal intensity information, while
the differential branch focuses on pathological contrast patterns. The two branches
interact and fuse through cross-attention mechanisms at each scale, progressively
downsampling to extract a multi-scale feature pyramid {Vg}eL:l, which provides visual
feature representations for subsequent decoder layers.

3.1.2 Topological Modality: Geometric Structure Prior Extraction
as Morphological Knowledge

Visual and semantic modalities provide texture features and region attributes respec-
tively; however, they lack explicit constraints on target geometric morphology. To
address this limitation, the topological modality analyzes regional geometric struc-
tures through persistent homology[26, 27], extracting geometric knowledge priors that
encode how tumors grow and spread. The system defines field functions based on the
three differential channels: Sgr takes high values in enhanced non-necrotic regions,
Stc captures both enhanced and necrotic signals, and Swr is primarily dominated
by edema signals.

Subsequently, topological analysis is performed for each field, retaining stable con-
nected regions while suppressing unstable isolated points and noise. In practice, we first
remove tiny isolated components and apply morphological closing to obtain cleaned
reference masks that preserve the global structure while reducing spurious fragments,
and then compute persistent homology on these cleaned fields. Following this analysis,
skeletons are extracted for stable regions and graph structures G. = (V,, E.) are con-
structed, where nodes contain key points and their attributes (field values, stability,
local features), and edges record inter-region connections and geometric attributes.
Consequently, graph attention networks (GAT)[42-44] jointly process three graph
structures to extract node embeddings:

T = {tj}]K:tl = GAT(GET UGt U GWT) (4)

obtaining K; topological tokens. These abstract graph embeddings need to be

transformed into spatial representations to interact with visual features. Accordingly,
the spatialization operator Il maps graph structures back to voxel space:

Pj(ﬂz) (,1‘) = HT(T, GC) = Z exp <_ d(.r’ 6)2) te (5)

272
eck.
For each graph edge e, a Gaussian response region is constructed centered on its

skeleton with radius 7. as the scale. For each node, a radial basis function is con-
structed. The distance d(z,e) from each voxel x to edge e determines the influence



strength of that edge on that voxel, thereby transforming the abstract graph struc-
ture into a spatial field that can directly interact with visual features. Consequently,
this enables geometric knowledge constraints of tumor growth along the skeleton to
function at each voxel location.

3.1.3 Semantic Modality: Structured Region Description and
Spatialization as Anatomical Knowledge

While visual features can capture texture and intensity patterns, they lack explicit rep-
resentation of region location and attributes. To address this deficiency, the semantic
modality transforms imaging space into structured descriptions that encode anatom-
ical knowledge priors. These semantic priors do not model full radiology reports or
diagnostic labels; instead, they summarise coarse spatial, morphological, and intensity
attributes of automatically detected abnormal regions into weak, machine-generated
descriptors that serve as soft auxiliary cues. Since the BraT§S dataset does not include
text annotations, this paper designs an automated generation pipeline from images
to text, inspired by unsupervised anomaly detection methods[45-47]. This pipeline
includes three key stages, as shown in Algorithm 1: first detecting candidate regions
through unsupervised methods, then extracting multi-dimensional attributes, and
finally assembling standardized text descriptions.

To ensure medical standardization and semantic consistency of generated text,
Stage 3 of the algorithm employs a controlled vocabulary mechanism. Table 1 shows
standardized vocabularies for each attribute type, with location terms referenced from
AAL3 atlas[52] definitions ensuring anatomical accuracy. Moreover, volume, mor-
phological, and signal features are all discretized into fixed levels, thereby avoiding
synonym confusion. The anomaly autoencoders used in Stage 1 are trained solely on
MRI intensities, without access to any segmentation labels, and are frozen when gen-
erating semantic attributes. They thus act as a deterministic feature transformation
of the same input volumes seen by the backbone, rather than an additional source of
supervision, and in the cross-validation protocol do not leak label information from
held-out folds.

Table 1 Controlled vocabulary examples (encoding anatomical knowledge)

Attribute Type Vocabulary

Laterality Left, Right

Location Frontal lobe, Temporal lobe, Parietal lobe, Occipital lobe, Basal ganglia,
Thalamus, ... (ref. AAL3 atlas)

Volume level Small, Medium, Large

Morphology Regular spherical, Ellipsoidal, Irregular

Enhancement pattern  Prominent, Moderate, Mild

Edema extent Extensive, Moderate, Localized

The algorithm and vocabulary jointly achieve unsupervised semantic generation:
locating anomalous regions through reconstruction error and symmetry analysis,
extracting spatial, morphological, and signal attributes then mapping to discrete



Algorithm 1 Image-to-semantic description generation pipeline

Require: Four-sequence MRI: {Im}mE{Tl, Tlce, T2, FLAIR}
Ensure: Semantic token sequence S = {s3}1,
1: Stage 1: Candidate region detection
2: Train denoising autoencoders for each modality, then compute reconstruction error
maps
3: In parallel, compute left-right hemisphere symmetry difference maps
4: Subsequently, fuse two-way anomaly responses to obtain candidate region set
(R}
5. Stage 2: Attribute extraction (encoding anatomical knowledge)
6: for each candidate region R; do
First, extract spatial attributes: centroid coordinates, volume, brain region loca-
tion (mapped via Automated Anatomical Labeling 3 (AAL3) standard atlas[52])

8:  Next, extract morphological attributes: compactness, principal axis direction,
shape irregularity

9:  Finally, extract signal attributes: statistics for each modality and differential
channel responses

10: end for

11: Stage 3: Text assembly and encoding

12: Discretize continuous attributes into controlled vocabulary labels (see Table 1)

13: Then, assemble natural language descriptions according to templates

14: Parse into JSON structured data: discrete fields @ continuous fields

15: Finally, S = MLPgep, (Concat(Embed(discrete), Norm(continuous)))

16: return Semantic token sequence S

labels, and finally assembling standardized descriptions. Notably, this pipeline requires
no manual annotation while ensuring both medical accuracy and facilitating subse-
quent network encoding.

Generated natural language descriptions need to be further transformed into spa-
tial distributions that can interact with visual features. This transformation process
consists of two steps: text encoding and spatial mapping. In the encoding stage, the
system first parses descriptions into JSON structured data, where discrete fields (such
as laterality, location, morphology) are mapped to dense vectors through embedding
layers, continuous fields (such as precise volume values, compactness) undergo z-score
normalization, and after concatenation are input to a multi-layer perceptron (MLP)
to obtain K¢ semantic token sequences of fixed dimension:

S = {sp}1, = MLPgop(Concat(Embed(discrete), Norm (continuous))) (6)
After obtaining global semantic tokens, the spatialization operator IIg maps them

to spatial distributions at the same resolution as visual features. This operator calcu-
lates weights at each voxel location based on region probability map Pa,a¢ and distance
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field Danat, thereby achieving spatial localization of semantic attributes:

Pée) (.’1?) = HS(S> PanataDanat) = Z’wk(l’) + Sk (7)
k

Weight wy(x) enables strong activation of corresponding semantic tokens for voxels
within specific regions, while weights decay for voxels far from that region. Con-
sequently, the semantic encoder is initialized based on Transformers pretrained on
medical text corpora, with hierarchical learning rate strategies during fine-tuning and
data augmentation (random dropping of non-critical attributes, synonym replace-
ment, etc.) to enhance robustness. In the current design, these semantic priors should
be regarded as weak, machine-generated descriptors rather than definitive clinical
diagnoses; their influence is modulated by the learned fusion weights, and a formal
neuroradiologist reader study to assess the plausibility of the derived attributes and
their alignment with radiological reasoning is an important direction for future work.
Semantic priors thus transform from global anatomical knowledge vectors into distri-
butional representations that can dynamically interact with visual features at each
spatial location.

The three paths complete transformation from raw MRI to structured knowledge
priors: the visual modality generates multi-scale feature pyramid {V;} encoding patho-
logical patterns, the semantic modality generates tokens S and their spatialization
Pél) encoding anatomical knowledge, and the topological modality generates graph

tokens T' and their spatialization Pg) encoding geometric constraints. To achieve
sample-level global guidance, the system fuses global representations of three-way pri-
ors into a unified conditional vector through adaptive gating. First, global pooling is
performed on three-way priors separately, then contribution degrees of each modality
are dynamically allocated through attention mechanisms:

z= Z iz, a; = softmax(w;' [Zyis||Zsem || Ztopo)) (8)
i

where Zyig, Zsem, Ztopo Tepresent global vector representations of visual, semantic,
and topological paths respectively. This conditional vector encodes global char-
acteristics of the current sample and is input to a lightweight hypernetwork to
generate modulation parameters: channel-level affine coefficients v(z), 8(z) for feature
modulation, and depthwise separable convolution kernels K(z) for adaptive filter-
ing. Consequently, this enables the network to adjust feature extraction and fusion
strategies based on sample characteristics (such as location, morphology, size).

3.2 Dual-Level Fusion Architecture

The prior generation stage provides multi-modal knowledge information for subse-
quent fusion. To effectively utilize these priors, this method employs a dual-level fusion
architecture: at the local level, three knowledge priors undergo confidence-weighted
synchronized fusion at each voxel location, thereby achieving dynamic balance of visual
features, semantic constraints, and topological priors. Simultaneously, at the global

11



level, sample-level conditional vectors generate modulation parameters for unified
adaptive adjustment of fused features.

3.2.1 Decoder Layer-wise Fusion

Each upsampling layer ¢ of the decoder performs dual-level fusion. Inputs include
visual features V; from the encoder, semantic tokens S and their spatialization Pée),

topological tokens T' and their spatialization Pq(f), and sample-level conditional vector
Z.

The fusion process first establishes information exchange channels among the three
knowledge priors. Visual features V; as Query separately query semantic tokens S
and topological tokens T, obtaining guidance from region attributes and geometric
constraints. Simultaneously, semantic and topological tokens as Query query visual
features, absorbing visual evidence from the current layer and updating their own
representations:

S" = S + Attention(S,V;), T’ =T + Attention(T, V) (9)
This bidirectional interaction enables knowledge priors to be refined layer by
layer during decoding—shallow layers based on coarse candidate regions, deep layers
incorporating more visual details. Updated S’,T" generate distributions for the cur-
rent layer through spatialization operators, thereby providing same-resolution modal
representations for subsequent fusion.
After obtaining same-resolution tri-modal representations, the system calculates
fusion weights at each voxel location z. Confidence of three-way features is estimated
through lightweight convolution ¢, and normalized via softmax:

[ (), s (), ()] = softmax (¢, (Ve(2)), ds(PY (x)), ¢ (P (x))) (10)
Fy(x) = ay(z) - V() + ay(@) - P (2) + au(2) - PO (x) (1)

where ¢, combines feature content with data quality (signal-to-noise ratio, recon-
struction error) to output confidence. The three-way weights satisfy Y « = 1, thereby
achieving adaptive fusion based on confidence of each knowledge prior at that location.
For example, semantic weight a; is higher when regional structure is clear, topolog-
ical weight ay is higher when boundaries are ambiguous but skeleton is stable, and
visual weight «,, is higher when signal quality is good. Conversely, when a prior branch
becomes inconsistent with the local visual evidence (e.g., noisy semantics or unsta-
ble topology), its confidence score decreases and the corresponding weight is reduced,
preventing unreliable priors from dominating the decision.

After obtaining fused features Fy, the system further applies sample-level adap-
tive adjustment. Conditional vector z generates two types of modulation parameters
through a lightweight hypernetwork: channel-level affine coefficients v(z), 8(z) apply
uniform transformation to all channels; for the differential branch, additional depth-
wise separable convolution kernels K(z) perform adaptive filtering, with this filter
acting on subspaces of differential-related channels through channel grouping mecha-
nisms:

12



Fy < ~(z)© Fy+ B(2), Fag < Faig + DepthwiseConv(Fuin; K (2)) (12)

This global guidance ensures that all spatial locations of the same sample share a
unified adjustment tendency. After skip connections and residual block transmission,
all decoder layers £ = L, ..., 1 progressively restore resolution, finally obtaining high-
resolution features Fj.

3.2.2 Unified Prior Fusion Module

The high-resolution features F; at the decoder top layer have fused visual representa-
tions from all levels; however, semantic and topological priors still need to play a role in
final classification decisions. To address this, this paper designs a Unified Prior Fusion
(UPF) module to transform all knowledge priors into a unified logit space. UPF has
clear division of responsibilities: base logits carry visual evidence accumulated from
all fusion layers, while prior energy terms specifically handle semantic and topological
constraints, with both achieving decision negotiation through energy addition.
For each class ¢ € {WT, TC,ET}, UPF generates prior energy through MLP:

e(x) = MLP([z, 2, PS" (), PV (2))) (13)
logit, (z) = logit?™* () + ¢, () (14)

where logit?®* is the base logit obtained from final features Fy through a classifi-
cation head, encoding visual evidence accumulated from all fusion layers. x is spatial
coordinates, z is sample-level conditional vector, and Pél), P}l) are semantic and topo-
logical spatialization features of the final layer. The MLP maps these inputs to prior
energy ¥.(zx), representing the likelihood that location x belongs to class ¢ based on
current knowledge priors.

Final classification logits adopt energy addition for decision-making. When visual
evidence is strong and priors are consistent, energy superposition produces high confi-
dence. When visual uncertainty exists but priors are explicit, prior energy compensates
for visual insufficiency. When priors conflict but visual discriminability is strong, base
logits dominate. To prevent prior energy from overly dominating decisions under low
confidence, magnitude regularization is applied to . during training (increasing L2
penalty when prior confidence is below threshold), while introducing prior alignment
terms in high-confidence regions to gently draw predictions closer to prior soft labels.

3.2.3 Nested Output Head

Final classification logits need to be converted to probability distributions while ensur-
ing hierarchical inclusion relationships ET C TC C WT. Traditional methods penalize
predictions violating hierarchy through loss functions, but this is only a soft con-
straint—networks may still output illegal results. To structurally guarantee output
legality, stick-breaking parameterization[51] embeds hierarchical relationships into the
network:
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pwr(z) = o(01(x)) (15)
prc(z) = pwr(a) - o(f2(z)) (16)
peT(2) = pre(z) - o(03(z)) (17)

where 0;(x) are intermediate parameters obtained from final logits through affine
projection. This parameterization ensures: regardless of 6; values, output probabilities
necessarily satisfy ppr < prc < pwr. Each subset’s probability is expressed as its
parent set probability multiplied by conditional probability: prc represents the prob-
ability of belonging to TC given that it is WT, and pgr represents the probability of
belonging to ET given that it is TC.

3.3 Loss Function Design

Model training adopts a multi-objective joint optimization strategy, with the overall
loss function composed of four complementary parts, respectively constraining segmen-
tation accuracy, hierarchical consistency, spatial continuity, and topological rationality.
The total loss function is defined as:

L= Lseg + O-Lchierarchy + 0-3£continuity + O-Sﬁtopology (18)

The basic segmentation loss Lz combines Dice loss[53] and weighted binary
cross-entropy loss (BCE), with the former focusing on region overlap and the lat-
ter optimizing voxel-level classification accuracy. Since the hierarchical relationship
ETCTCCWT requires multi-label classification, BCE is employed rather than multi-
class cross-entropy. Specifically, Lsg = Lpice + 0.5LBcE, where BCE uses class
frequency reciprocal as weights to alleviate class imbalance. Although nested out-
put heads structurally guarantee hierarchical relationships, soft constraint Lpicrarchy
is still introduced during training to further strengthen this characteristic. This loss
accelerates convergence of hierarchical constraint learning in early training and pro-
vides additional numerical stability throughout training, thereby mitigating transient
violations due to gradient fluctuations. This loss penalizes any predictions violating
inclusion relationships:

Lhierarchy = ﬁ Z [max(0, ppr(z) — prc(z)) + max(0, prc(z) — pwr(z))]  (19)
€N

where () represents voxel space. This term is zero when predictions satisfy hierarchi-
cal constraints; otherwise, it imposes linear penalties. Spatial continuity loss Lecontinuity
encourages predictions to remain smooth within homogeneous regions while main-
taining sharpness at true boundaries based on 26-connected neighborhoods. This loss
accumulates for each class individually and considers voxel anisotropy:

14



Lecontinuity = |Q|ZZ > w'GXp(_O{HVIfused(x”b) (20)

¢ 2€Q yeNas(a)

where Nag(z) represents the 26-connected neighborhood of voxel z, p.(x) is the
prediction probability for class c¢ at location x, d., is the actual physical distance
between voxels x and y, V Ifysed () is the gradient magnitude of the fused multi-modal
image, and weight coefficient o controls boundary preservation strength.

This design uses image gradients as boundary indicators: reducing continuity
constraints at locations with large gradients (possible boundaries), thereby allowing
predictions to produce discontinuities; imposing strong constraints in flat regions to
promote smoothness. Topological consistency loss Liopology based on geometric pri-
ors extracted from topological analysis[26], constrains consistency of prediction mask
connectivity with topological references:

Etopology = Z |B0(p(’) - BO(Mtcopo)} + |B1(pc) - Bl(Mtcopo)| (21)
c€{WT,TC,ET}

where By(-) and Bj(-) represent the number of connected components and ring
structures (Betti numbers) respectively, and Mg, is the topological reference mask
for class c. Topological reference masks are generated by applying adaptive thresh-
olds on corresponding differential channels: first performing topological analysis on
differential channels, sorting all connected regions by stability, retaining the top K
most stable components (K adaptively determined based on validation set), then per-
forming morphological closing operations on support regions of these components to
obtain M, . This loss acts as a soft regulariser with a modest weight: it encourages
predictions to match the global connectivity patterns of the references and prevents
excessive isolated regions or unreasonable hole structures, while remaining tolerant to

small local perturbations.

4 Experiments

4.1 Dataset and Experimental Setup

This study employs the BraTS 2020 dataset for evaluation[6], which contains 369
multi-modal MRI scans, each including four sequences: T1-weighted (T1), T1 contrast-
enhanced (Tlce), T2-weighted (T2), and Fluid Attenuated Inversion Recovery
(FLAIR). The cohort aggregates clinical data from multiple institutions and scanners
with heterogeneous acquisition protocols, providing a realistic setting with inherent
distribution shifts. Notably, all images are registered to a unified anatomical template,
resampled to Imm? isotropic resolution with dimensions of 240x240x 155 voxels. Fur-
thermore, annotations are completed by professional neuroradiologists, defining three
hierarchical regions: enhancing tumor (ET, label 4), tumor core (TC=ET+necrosis,
labels 14+4), and whole tumor (WT=TC+edema, labels 14+2+4). All experiments in
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this study use all four MRI sequences during training and inference, following the
standard BraT$S protocol.

For evaluation, the dataset employs five-fold cross-validation, using approximately
74 cases as test set, 221 cases as training set, and 74 cases as validation set each
time. The preprocessing pipeline includes: (1) Z-score normalization computing brain
region mean and standard deviation; (2) spatial cropping to 128x128x128; (3) differ-
ential feature construction, computing three channels Dophances; Dedema, and Dyecrosis»
normalized to [0, 1] after logarithmic compression and quantile clipping. In addition,
data augmentation during training includes random flipping, rotation (£15), scaling
(0.9-1.1), elastic deformation, and intensity transformation.

Experiments are conducted on NVIDIA A100 GPU (40GB) using PyTorch 1.12.
Core parameters include: AdamW optimizer[54], learning rate 2e-4, batch size 2, train-
ing for 300 epochs, cosine annealing schedule. Moreover, semantic token number Ky =
20, topological token number K; = 15, fusion module hidden dimension 256. Inference
adopts 8-fold test-time augmentation, with post-processing removing isolated compo-
nents smaller than 500mm? and applying morphological closing. Evaluation metrics
are Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95),
following recommendations from the Metrics Reloaded framework[21], while noting
potential misleading aspects of HD95[20]. Statistical testing employs paired sample
t-tests (o = 0.05).

4.2 Comparison with State-of-the-Art Methods

Table 2 presents quantitative comparison of STPF with state-of-the-art deep learn-
ing methods on the BraTS 2020 dataset. Comparison methods cover mainstream
architectures, including attention mechanisms (Attention-UNet[55], DAUnet[56]),
convolutional networks (SegResNet[29], nnU-Net[12]), Transformers (TransBTS[32],
TransUNet[33], UNETR|[31], Swin UNETR[13], SwinBTS[34]), and hybrid architec-
tures (CKD-TransBTS[35], FDiff-Fusion[17]). Importantly, all methods use official
code and recommended parameters, trained and evaluated on the same data to ensure
fair comparison.

As shown in Table 2, STPF achieves a mean Dice coefficient of 0.868 on BraTsS
2020, thereby surpassing all comparison methods. Compared to the best baseline FDiff-
Fusion, it improves by 2.6 percentage points (3.09% relative improvement). Moreover,
sub-region analysis shows STPF has advantages in TC (0.864) and ET (0.838) regions,
improving by 2.0 and 6.2 percentage points respectively compared to FDiff-Fusion.
This is attributed to the synergistic effect of tri-modal knowledge priors: explicitly
constructed differential features directly provide lesion contrast information. Addition-
ally, automatically generated semantic descriptions explicitly distinguish enhancement
and necrosis boundaries in TC segmentation. Furthermore, topological constraints
extracted through persistent homology effectively identify true small lesions in ET
regions while suppressing false positives. Taken together with the MRI-only baseline,
these results indicate that the visual stream carries most of the predictive power,
while semantic and topological priors provide complementary corrections that are
particularly beneficial for challenging sub-regions.

16



Table 2 Performance comparison on BraTS 2020 dataset. Reports Dice coefficient (DSC, 1)
and 95% Hausdorfl distance (HD95, |, unit: mm) for three sub-regions. Best results in bold,
second-best underlined.

Method wT TC ET Mean DSC

DSC HD95 DSC HD95 DSC HD95
Attention-UNet[55] 0.845 15.174 0.782 16.380 0.716 9.095 0.781

DAUnet[56] 0.898 5.400 0.830 9.800 0.786 27.600 0.838
SegResNet[29] 0915 3.275 0.836 3.769 0.730 3.486 0.827
nnU-Net[12] 0912 3.781 0.842 7.771 0.765 18.230 0.840
TransBTS[32] 0.911 3.360 0.836 2.986 0.740 3.403 0.829
TransUNet[33] 0.892 3.146 0.825 2.891 0.758 3.621 0.825
UNETR]31] 0.902 4.305 0.813 5.740 0.732 4.643 0.816
Swin UNETR][13] 0.917 2856 0.826 4.314 0.749 4.503 0.830
SwinBTS[34] 0.891 8.560 0.804 15.780 0.774 26.840 0.823
CKD-TransBTS[35] 0.898 2.419 0.841 3.447 0.770 3.018 0.836
FDiff-Fusion[17] 0.905 2.207 0.844 3.311 0.776 2.714 0.842
STPF (Ours) 0.901 4.203 0.864 4.498 0.838 3.217 0.868

For ET’s HD95 metric, STPF achieves 3.217mm, which, although not the best in
this column (FDiff-Fusion at 2.714mm), still demonstrates competitive performance.
However, when combining Dice coefficient and cross-fold robustness (see Table 5),
STPF is superior in comprehensive performance. In the WT region, STPF’s DSC
of 0.901 is slightly lower than SegResNet (0.915) and Swin UNETR (0.917). This is
mainly because clear T2/FLAIR signals of large-scale edema provide sufficient dis-
criminability for pure visual methods. Nevertheless, Table 5 shows STPF’s cross-case
standard deviation is smaller than pure visual baselines, thereby reflecting better
robustness. Notably, recently proposed methods such as SegMamba[l4] and Diff-
UNet[16] show potential but have not been evaluated under the same experimental
settings. Consequently, future work will incorporate comparison with these methods.

4.3 Detailed Statistical Analysis of Dice Coefficient
Distribution

To comprehensively characterize model performance across cases of varying difficulty,
we conducted distributional statistical analysis on the 369-case test set. It should
be noted that statistical data in Tables 3 and 4 are based on aggregated out-of-fold
prediction results from five-fold cross-validation (n=369). Specifically, each case is
predicted exactly once as a test set in some fold, and after deduplication, the complete
dataset’s performance distribution is obtained.

Distribution statistics reveal STPF’s adaptive characteristics across cases of vary-
ing difficulty. Medians (WT=0.919, TC=0.895, ET=0.870) are higher than means,
combined with negative skewness (-0.601 to -1.199), thereby confirming most cases
achieve good results. This is attributed to differential features providing discrimina-
tive signals and dual-level fusion automatically elevating reliable modality weights.
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Table 3 Detailed distribution statistics of Dice coefficients (n = 369). Based on
aggregated out-of-fold prediction results from five-fold cross-validation.

Statistical Metric WT TC ET
Central Tendency and Dispersion
Mean + SD 0.901 £ 0.101 0.865 £+ 0.141 0.837 £0.179
95% CI [0.890, 0.911] [0.851, 0.880] [0.819, 0.856]
Median 0.919 0.895 0.870
Quartiles and Extremes
25th percentile (Q1) 0.860 0.815 0.760
75th percentile (Q3) 0.939 0.935 0.905
Interquartile range (IQR) 0.079 0.121 0.145
Minimum 0.562 0.413 0.264
Maximum 0.964 0.975 0.978
Distribution Shape
Skewness —0.853 —1.199 —0.601
Kurtosis 2.147 3.462 0.852

Interquartile ranges show gradient growth (WT=0.079, TC=0.121, ET=0.145), reflect-
ing increasing task difficulty: small IQR for WT benefits from clear edema signals
enabling visual modality dominance, while large IQR for ET stems from topologi-
cal constraint effectiveness depending on initial detection quality. Meanwhile, TC’s
high kurtosis (3.462) and negative skewness (-1.199) indicate performance polariza-
tion. Extreme value ranges (minimum WT=0.562, TC=0.413, ET=0.264) reveal that
in difficult cases, low confidence across all three priors leads to increased fusion uncer-
tainty. Nevertheless, narrow 95% confidence intervals (£0.010-0.019) and minority left
tail in distribution prove method stability in the majority of scenarios.

4.4 Dice Coefficient Percentile Distribution Analysis

To characterize model performance distribution at finer granularity, we computed
complete percentile statistics from P1 to P99.

Table 4 Percentile distribution of Dice coefficients. Based on aggregated out-of-fold
prediction results from five-fold cross-validation (n = 369).

Percentile WT TC ET Percentile WT TC ET
P1 0.587 0.434 0.285 P50 (Median) 0.919 0.895 0.870
P5 0.781 0.650 0.419 P60 0.932 0.907 0.888
P10 0.820 0.739 0.580 P70 0.937 0.922 0.902
P15 0.844 0.772 0.654 P75 (Q3) 0.939 0.935 0.905
P20 0.853 0.790 0.703 P80 0.942 0.942 0.919
P25 (Q1) 0.860 0.815 0.760 P90 0.952 0.955 0.942
P30 0.870 0.832 0.790 P95 0.958 0.963 0.960
P40 0.893 0.857 0.835 P99 0.963 0.971 0.974
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Dice Percentile Profiles (WT / TC / ET)
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Fig. 2 Dice coefficient percentile curves for three tumor sub-regions (WT, TC, ET). Steeper curves
indicate performance concentration in most cases, flatter curves indicate broader performance dis-
tribution. The steepest WT curve indicates stable edema segmentation, while the flattest ET curve
reflects increased difficulty of small lesion detection.

Percentile distribution characterizes dual-level fusion’s adaptive behavior across
difficulty gradients (Figure 2). In the difficult range (P1-P10), ET presents low-
est values (P1=0.285, P10=0.580), reflecting small lesion detection challenges, where
all three priors are unreliable due to low SNR. In contrast, WT maintains 0.820
at P10, benefiting from clear signals of large-scale edema enabling visual modality
dominance. In the typical case range (P25-P75), performance stabilizes at TC=0.815-
0.935 and ET=0.760-0.905, where differential features clearly delineate boundaries,
semantic descriptions accurately match, and topological structures meet expecta-
tions. Consequently, dual-level fusion flexibly allocates weights based on voxel location
locally and maintains consistency through sample-level conditional vectors globally.
In the high-performance range (P75-P99), approaching human expert levels (P95:
WT=0.958, TC=0.963, ET=0.960), these simple cases have typical imaging features.
Therefore, the unified prior fusion module transforms tri-modal knowledge predictions
into the same logit space with consistent predictions, coordinated with nested output
heads ensuring hierarchical relationships, thereby making outputs both accurate and
compliant with medical definitions.

4.5 Five-Fold Cross-Validation Stability Analysis

To evaluate model training stability and result reproducibility, we conducted com-
parison of complete STPF model and MRI-only visual baseline using five-fold
cross-validation.

Five-fold cross-validation confirms the stability advantage of the knowledge-guided
tri-modal prior fusion architecture (Figure 3). Cross-fold coefficients of variation
(CV) for the complete model (0.23% to 0.33%) are lower than the visual baseline
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Table 5 Five-fold cross-validation results (Dice coefficients). Standard deviations in table are
cross-fold standard deviations (n=>5), used to evaluate model stability under different data splits.

Complete Model (STPF) MRI-Only Visual Baseline

Fold WT TC ET WT TC ET

Fold-1 0.904 0.867 0.842 0.866 0.804 0.754
Fold-2 0.901 0.863 0.837 0.860 0.796 0.745
Fold-3 0.898 0.862 0.836 0.859 0.795 0.743
Fold-4 0.903 0.866 0.839 0.865 0.802 0.751
Fold-5 0.899 0.864 0.838 0.861 0.798 0.747
Mean 0.901 0.864 0.838 0.862 0.799 0.748
SD 0.003 0.002 0.002 0.003 0.004 0.004
CcvV 0.33% 0.23% 0.24% 0.35% 0.50% 0.54%

95% CI [0.898, 0.904] [0.862, 0.867] [0.836, 0.841]  [0.858, 0.866] [0.794, 0.804] [0.742, 0.754]

5-Fold Dice: Exp-1 vs Exp-7 (single-figure summary)

Fold-1 E10.904 E10.867 E10.842 E10.871 0.09
old- E70.866 E70.804 E70.754 £70.808

Fold-2 E10.901 E10.863 E10.837 E10.867 0.08
old- E70.860 £70.796 E70.725 £70.800
o
(0]
g
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Fig. 3 Five-fold cross-validation Dice coefficient heatmap, comparing complete STPF model (Exp-
1) with MRI-only visual baseline (Exp-7). Darker colors indicate greater performance differences.
Complete model outperforms baseline across all folds and sub-regions, showing higher cross-fold
stability.

(0.35% to 0.54%). This is attributed to prior redundancy and adaptive fusion—when
one prior fluctuates due to data distribution differences, local confidence weighting
automatically reduces its weight while elevating contributions from other priors for
compensation. Five-fold mean comparison shows the complete model consistently sur-
passes the baseline across all folds, with minimum improvement margins of +3.9 for
WT, 4+6.5 for TC, and +9.0 percentage points for ET. Stability difference is most
pronounced in ET region (complete model cross-fold CV=0.24% vs baseline 0.54%),
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because topological knowledge constraints extracted through persistent homology pro-
vide geometric constraints orthogonal to visual features. Consequently, when visual
misjudgment occurs due to noise, topological constraints can identify and suppress
unreasonable predictions. Narrow 95% confidence intervals (complete model +0.002-
0.003) and all five folds achieving pj0.001 significance verify STPF’s generalization
capability and clinical deployment reliability.

4.6 Loss Function Ablation Experiments

To verify contributions of each component, we progressively removed loss function
terms and prior branches to observe performance changes (Table 6). Importantly, all
ablation configurations use the same training set and hyperparameters.

Table 6 Loss function and prior ablation results (with standard deviations). DSC and HD95
show means, Std shows cross-case standard deviations (n=369). HD95 unit: mm.

Configuration wT TC ET Mean

DSC Std HD95 Std DSC Std HD95 Std DSC Std HD95 Std DSC HD95

Complete model 0.901 0.101 4.203 8.514 0.864 0.141 4.498 10.027 0.838 0.179 3.217 8.973 0.868 3.973
w/o Ltopology 0.893 0.106 4.584 8.917 0.857 0.146 4.937 10.483 0.826 0.185 3.648 9.421 0.859 4.390
w/o l:hierarchy 0.883 0.108 4.817 9.281 0.854 0.149 5.164 10.748 0.822 0.190 3.782 9.684 0.853 4.588
w/o [‘continuity 0.886 0.110 4.918 9.463 0.848 0.153 5.376 11.082 0.811 0.196 4.127 10.139 0.848 4.807
w/o Topological prior 0.881 0.112 5.127 9.741 0.842 0.156 5.594 11.368 0.808 0.201 4.283 10.447 0.844 5.001
w/o Semantic prior 0.876 0.114 5.318 10.024 0.838 0.158 5.759 11.637 0.801 0.206 4.541 10.829 0.838 5.206
MRI-only visual 0.862 0.119 5.841 10.627 0.799 0.170 6.518 12.483 0.748 0.226 5.387 11.942 0.803 5.915
Ablation A Dice — Paired Box Plots (n=369)
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Fig. 4 Ablation experiment Dice coefficient change boxplots (n=369). Each configuration shows
performance degradation relative to complete model (ADice) and its 95% confidence interval. Removal
of semantic prior (w/o SemPrior) and pure visual baseline (Only MRI) cause substantial performance
loss, thereby proving the important role of knowledge-guided multi-modal prior fusion.

Ablation experiments verify contributions of knowledge-guided components
(Figure 4). At the loss function level, removing Lecontinuity has the greatest impact
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(mean DSC from 0.868 to 0.848, HD95 deteriorating from 3.973 to 4.807mm). In con-
trast, removing Lhicrarchy reduces mean DSC by 1.5% (to 0.853). Meanwhile, removing
Liopology causes ET’s HD95 to deteriorate by 13.4% (from 3.217 to 3.648mm).

At the prior level, ablation more directly quantifies knowledge fusion value:
removing topological prior increases ET’s HD95 to 4.283mm (+33.1%). Similarly,
removing semantic prior causes ET’s HD95 to deteriorate to 4.541mm (+41.2%).
The MRI-only visual baseline declines substantially (mean DSC to 0.803, -6.5%;
ET to 0.748, -9.0%), thereby proving that explicitly introduced differential features,
semantic knowledge, and geometric constraints bring improvements. Furthermore,
cross-case standard deviation analysis shows complete model (WT=0.101, TC=0.141,
ET=0.179) smaller than baseline (WT=0.119, TC=0.170, ET=0.226), thus indicating
multi-modal knowledge prior redundancy enhances robustness. Taken together, these
ablations confirm that the visual stream forms the main backbone of the prediction,
while semantic and topological priors act as complementary sources of information
that stabilise performance and are especially useful in difficult ET and TC cases.
Recent semi-supervised and weakly-supervised methods[36-38] may provide additional
improvements in data-limited scenarios, worth exploring in combination with STPF
in future work.

4.7 Statistical Significance Testing

To verify statistical significance of performance differences in ablation experiments,
we employed paired sample t-tests on 369 test cases (Table 7).

Table 7 Paired sample t-tests for ablation experiments (n = 369).

Comparison t-statistic p-value 95% CI Cohen’s d
W/0 Liopology vs Complete ~7.362 < 0.001 [—0.011, —0.007] 0.383
w/0 Lhicrarchy vs Complete —12.269 < 0.001 [-0.017, —0.013] 0.639
w/0 Lcontinuity vs Complete —16.360 < 0.001 [—0.022, —0.018] 0.851
w /o Topological prior vs Complete —19.640 < 0.001 [—0.026, —0.022] 1.022
w/o Semantic prior vs Complete —24.537 < 0.001 [-0.032, —0.028] 1.278
MRI-only visual vs Complete —53.172 < 0.001 [-0.067, —0.063] 2.768

Cohen’s d effect size: small (0.2), medium (0.5), large (0.8). All p-values j0.001 indicate high statistical
significance.

Paired sample t-tests confirm high statistical significance (all p-values j0.001) for
differences between all ablation configurations and the complete model, thereby ruling
out random chance. Cohen’s d effect size hierarchical distribution quantifies component
importance: MRI-only visual baseline’s large effect size (d=2.768) and its confidence
interval (CI=[-0.067, -0.063] completely below zero) indicate knowledge-guided multi-
modal prior fusion brings improvements, thus validating the core hypothesis that
explicitly introducing medical knowledge and geometric constraints can improve pure
visual learning. Large effect sizes at the prior level (semantic d=1.278, topological
d=1.022) prove importance of both knowledge priors. Loss function effect sizes show
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gradient distribution, with spatial continuity loss (d=0.851) verifying the important
role of explicit boundary preservation. Meanwhile, medium effect sizes of hierarchi-
cal constraints (d=0.639) and topological loss (d=0.383) indicate these regularization
terms primarily play reinforcement roles.

4.8 Robustness Analysis

To evaluate model tolerance to incomplete or noisy semantic priors, we designed gradi-
ent perturbation experiments covering from mild perturbations to completely random
(Table 8).

Table 8 Semantic condition perturbation experiments.

Perturbation Type WT TC ET Mean Performance Drop
Complete semantic prior 0.901 0.864 0.838 0.868 -
Attribute loss scenarios
Drop 30% attributes 0.896 0.862 0.834 0.864 0.46%
Drop 50% attributes 0.891 0.859  0.829 0.860 0.92%
Drop 70% attributes 0.884  0.855  0.824 0.854 1.61%
Noise injection scenarios
Random noise 10% 0.898 0.863  0.836 0.866 0.23%
Random noise 30% 0.893 0.859  0.832 0.861 0.81%
Completely random semantic ~ 0.877  0.849 0.818 0.848 2.30%

Perturbation experiments verify adaptive tolerance capability of dual-level fusion
mechanism (Figure 5). Under attribute loss scenarios, performance shows gradual
degradation curve (30% loss -0.46%, 50% -0.92%, 70% -1.61%). This is attributed
to local confidence weighting detecting semantic incompleteness and automatically
elevating visual and topological weights for compensation. Noise injection scenarios
show model suppression capability for erroneous information (30% noise only -0.81%),
because confidence estimation detects inconsistencies through cross-modal attention
and reduces noise weights. Completely random semantic scenario (performance drop
2.30% to 0.848) verifies automatic degradation capability: when semantics are unreli-
able, confidence weighting makes semantic weights approach zero, with performance
approaching the configuration without semantic prior (0.838) but still higher than
pure visual baseline (0.803). Consequently, this proves topological knowledge prior
continues providing geometric constraints to maintain basic performance, reflecting
multi-modal knowledge prior redundancy value. Taken together, these perturbation
experiments show that the network does not blindly trust the semantic stream, but
instead learns to discount inconsistent or noisy semantic cues and fall back towards the
visual-topological configuration when necessary. The gaze-guided weakly-supervised
method proposed by Chen et al.[40] provides new insights for further enhancing
semantic robustness.
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Fig. 5 Robustness analysis dumbbell plot under different semantic perturbation scenarios. Each
line segment connects the complete model with corresponding perturbation scenario’s mean Dice
coefficient, with segment length indicating performance degradation magnitude. Model shows good
tolerance to attribute loss and noise injection, maintaining stable performance even under 70%
attribute loss or completely random semantics.

4.9 Qualitative Visualization Analysis of Representative Cases

Analyzing the actual performance of the STPF framework through qualitative visual-
ization of three representative cases in Figure 6: Case 1 presents a large mass with ring
enhancement and central necrosis structure, Case 2 shows incomplete ring enhance-
ment with unclear boundaries, while Case 3 demonstrates irregular morphology and
extensive necrotic regions. Under these three representative scenarios, STPF’s unified
prior fusion module and nested output head consistently ensure the structural legal-
ity of ETCTCCWT, with WT and TC regions maintaining stable high scores (Dice
0.88-0.95). Meanwhile, the ET region achieves further improvement to 0.9129 in Case
3 with clear ring enhancement, and maintains 0.8812 performance in Case 2 with
discontinuous ring through the completion and denoising effects of topological and
semantic knowledge priors. Error pixels (210-388) are primarily concentrated at the
ET-TC rim zone and the peripheral FLAIR gradient margins of WT, which is consis-
tent with the discussion in the main text regarding HD95’s susceptibility to boundary
thresholds and intensity gradients. Attention heatmaps show a progressive focusing
trajectory from broad to precise: encoder layers demonstrate wide-area perception,
while decoder layers progressively converge to rim walls and interfaces. This aligns
with the voxel-level confidence weighting mechanism [, (), as(z), o ()], indicating
that pathological contrasts from differential channels (T1ce-T1, T2-FLAIR, T1/T2),
semantically spatialized weights, and spatial mappings of topological skeletons form
effective complementarity at ambiguous boundaries. Consequently, this achieves the
Dice improvements reported in Table 2 and the cross-fold stability in Table 5, while
effectively preventing topological errors such as ET fragmentation or detachment from
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TC. These results validate the advantages of knowledge-guided STPF in ambiguous
boundary scenarios.

4.10 Model Scale and Computational Efficiency Analysis

To explore tradeoffs among model scale, computational efficiency, and segmenta-
tion accuracy, we trained four versions of STPF with different base filter number
configurations.

Table 9 Complete metrics for model scale and computational efficiency. Includes parameters,
FLOPs, latency quantiles, throughput, memory, etc.

Base Params FLOPs Avg Infer SD P95 P99 Sample thru
Filters (M) (GFLOPs) (ms) (ms) (ms) (ms) (samples/s)
16 42.63 16,003.79 1,199.18 41.95 1,253.16 1,330.81 1.646
24 79.10 34,490.50 1,214.79 30.30 1,241.65 1,317.61 1.651
32 129.53 60,174.04 1,240.20 34.54 1,248.18 1,361.45 1.617
40 193.90 93,054.40 1,307.50 91.38 1,548.14 1,554.08 1.592
Base Batch thru Avg latency Infer mem Train mem FLOPs/ms Params/mem eff
Filters (batches/s) (ms) (GB) (GB) (M/GB)
16 0.823 1,214.84 2.84 5.72 13.35 7.45
24 0.825 1,211.46 3.57 6.79 28.39 11.65
32 0.808 1,236.93 4.34 8.35 48.52 15.51
40 0.796 1,256.38 5.15 9.97 71.17 19.45

Model scale evaluation reveals Base Filters 32 achieves good balance across
performance, speed, resources, and stability. From parameter-performance tradeoff
perspective, parameters increase from 42.63M to 193.90M (355% growth) across four
configurations; however, performance gains show diminishing marginal returns. Specif-
ically, Base Filters 32 achieves 0.868 DSC with 129.53M parameters, saving 33.2%
parameters compared to configuration 40 while losing only 0.3% accuracy. Regarding
computational efficiency, configuration 32’s FLOPs/ms ratio of 48.52 is higher than 16
(13.35) and 24 (28.39), thereby indicating full GPU utilization without memory access
bottlenecks. Stability metrics show configuration 32’s P99 latency (1361.45ms) differs
from mean by only 9.8%, with moderate SD of 34.54ms. In contrast, configuration
40 differs by 18.9% with SD surging to 91.38ms. For resource footprint, configuration
32’s inference memory of 4.34GB and training memory of 8.35GB leave ample margin
under A100 (40GB) constraints, with parameter efficiency of 15.51 M/GB balancing
expressive capability and memory overhead. Although STPF introduces additional
prior branches, this configuration keeps the overall computational footprint compara-
ble to typical 3D transformer-based glioma segmentation models and well within the
capabilities of research-grade GPUs; further reducing runtime on standard hospital
hardware is mainly an engineering problem (e.g., thinner backbones, mixed-precision
inference, pruning or distillation) that is orthogonal to the proposed prior-guided
fusion mechanism. Overall, Base Filters 32 achieves an attractive configuration for
practical deployment.
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Fig. 6 Qualitative visualization analysis of representative cases. Each row displays one case, from
left to right including: original MRI four sequencepg T1, Tlce, T2, FLAIR), ground truth and predic-
tion overlay (GT/Pred Overlay, green=WT, red=TC, blue=ET), independent segmentation results
and Dice coefficients for three tumor sub-regions, error distribution map (red regions mark error pixel
counts), encoder-decoder layer attention heatmaps (Jet colormap, red=high activation), Dice bar
chart comparison. Case 1 shows large glioma (210 error pixels), Case 2 shows ambiguous boundary
tumor (342 error pixels), Case 3 shows irregular morphology and necrotic regions (388 error pixels).
Progressive focusing pattern in attention heatmaps validates dual-level fusion mechanism effective-
ness.



5 Discussion

While STPF achieves a mean Dice coefficient of 0.868 in fully-supervised scenarios on
BraTS 2020 by integrating differential features, semantic descriptions, and topolog-
ical constraints, its adaptation capability in data-limited environments still requires
verification. Specifically, the current framework’s semantic generation module employs
unsupervised anomaly detection strategies, which can theoretically utilize unlabeled
data to generate pseudo-semantic labels in semi-supervised scenarios[45-47]. More-
over, when combined with consistency regularization[36] and dynamic contrastive
learning[37], this approach can further improve model robustness under annota-
tion scarcity. In few-shot learning scenarios, topological knowledge priors extracted
through persistent homology analysis[26, 27] rely on stable geometric pattern recog-
nition. However, limited training samples may lead to unstable skeleton extraction.
Additionally, confidence estimation in dual-level fusion requires sufficient samples
to calibrate voxel-level weight allocation. Fortunately, these issues can be mitigated
through meta-learning or prototypical networks[38]. Regarding weakly-supervised sce-
narios, they provide opportunities for STPF: region-level attribute descriptions in
semantic modality (such as “large irregular frontal lobe tumor”) naturally correspond
to coarse-grained annotations. Furthermore, topological constraints can infer complete
morphology from scribble annotations[38] or gaze/attention signals[40]. Consequently,
dual-level fusion can adaptively rely on more reliable priors in low-confidence regions.
Evaluating STPF in these scenarios can not only quantify multi-modal knowledge prior
redundancy’s compensatory capability when supervision signals weaken but also reveal
complementary mechanisms of different priors under sparse annotation conditions.

From a generalisation perspective, the proposed STPF framework is conceptually
well suited to heterogeneous clinical data such as the multi-institutional, multi-scanner
cohorts used in the BraTS challenges[6, 7]. First, the anatomical and semantic pri-
ors are expressed in a normalised anatomical space (e.g., MNI space with AAL3
parcellation[52]) and in terms of relative region-level attributes (location, laterality,
volume category, morphology), which are expected to be more stable across scan-
ners and acquisition protocols than raw intensities. Second, the topological priors
operate on connectivity and nesting relationships (for example, whether tumour com-
ponents form additional holes or isolated fragments) rather than on absolute signal
values, consistent with recommendations from topological data analysis for medical
imaging[26, 27]. Third, the voxel-level fusion weights and the sample-level gate are
learned jointly with the segmentation objective and can reweight visual, semantic,
and topological streams depending on their local consistency. Together, these design
choices encourage the model to rely on structural cues that transfer across acquisi-
tion settings, while allowing the fusion module to adaptively compensate for moderate
domain shifts within a heterogeneous clinical cohort.

While the current framework integrates MRI multi-sequences, natural language
semantics, and geometric topology, it remains limited to specific configurations for
brain gliomas. Notably, the BraTS challenge has expanded to diverse tasks includ-
ing meningioma radiotherapy planning[9], brain metastases[10], and pathology image
analysis[11], each with different clinical requirements and technical challenges. For
instance, meningiomas require precise delineation of dural invasion, brain metastases
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involve detecting multiple small lesions, and pathology analysis demands cell-level seg-
mentation. Looking forward, broader knowledge prior integration includes metabolic
activity captured by functional imaging (fMRI, PET), white matter connections
revealed by diffusion tensor imaging, and molecular subtypes provided by genomics.
Importantly, these heterogeneous data sources can collaboratively make decisions
through STPF’s unified prior fusion module in logit space. Another practical extension
is to relax the assumption that all four MRI sequences are always available and combine
STPF with modality-dropout training or cross-modal completion modules to handle
missing-sequence scenarios commonly encountered in clinical practice[57, 58]. Further-
more, STPF is naturally compatible with federated learning for multi-institutional
neuroimaging, since anomaly detection, semantic attribute extraction, and topologi-
cal skeletonisation can be performed locally at each site and only the segmentation
and fusion parameters need to be shared, as discussed in recent work on federated
learning in medicine and in reviews of brain tumour segmentation with federated
learning techniques[59-61]. More promising directions involve deep integration with
medical foundation models: pretrained models like Biomed CLIP[22] can replace the
current lightweight semantic encoder, thereby providing domain knowledge. Addi-
tionally, embedding segmentation tasks into LLM-driven clinical reasoning workflows
can achieve end-to-end parsing from imaging reports to structured attributes. Ulti-
mately, achieving zero-shot cross-task transfer through instruction fine-tuning becomes
possible. This requires transitioning from current task-specific explicit prior construc-
tion toward general modality alignment and cross-modal reasoning. Recent works like
SegMambal[14, 15], Diff-UNet[16], and HybridMIM[18] provide technical foundations
for this transition.

6 Conclusion

This paper proposes a knowledge-guided brain tumor segmentation framework based
on synchronized tri-modal prior fusion (STPF), achieving accurate and structurally
reasonable tumor region segmentation through explicit integration of differential
features, semantic knowledge, and geometric constraints. Core innovations include
knowledge-driven multi-modal prior generation modules, dual-level adaptive fusion
architecture, and unified prior fusion with nested output heads.

Experimentally, STPF achieves a mean Dice coefficient of 0.868 on the BraTS
2020 dataset, surpassing the best baseline by 2.6 percentage points. Moreover, five-fold
cross-validation coefficients of variation of 0.23% to 0.33% prove robustness. Addi-
tionally, ablation experiments verify effectiveness of each knowledge prior module.
More importantly, STPF’s success demonstrates the potential of knowledge-guided
paradigms—through explicit modeling of medical knowledge priors rather than pure
data-driven approaches, discriminative capability can be improved in ambiguous
boundary regions.

Looking ahead, future work will focus on three directions: first, verifying general-
ization capability in data-limited scenarios including semi-supervised|[36], few-shot[38],
and weakly-supervised[40]; second, extending to multi-source heterogeneous modal-
ities and exploring deep integration with medical foundation models[22]; third,
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evaluating adaptability on BraTS 2025 new tasks[8] and integrating with methods
like SegMamba[l4, 15] and Diff-UNet[16]. In conclusion, this research provides a
knowledge-guided paradigm for constructing more intelligent and reliable medical
image analysis systems.
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Appendix A Network Architecture Details

This section provides detailed description of the complete network architecture of
the STPF framework. The encoder adopts a dual-branch design: the original branch
processes four-sequence MRI inputs (T1, Tlce, T2, FLAIR), and the differential
branch processes three-channel differential features (Denhance, Dedemay Drecrosis). Both
branches employ symmetric 5-layer downsampling paths, with channel configura-
tions of {32, 64,128, 256,512} (original branch) and {16, 32,64,128,256} (differential
branch), corresponding to base_channels x 2¢. Each encoder block consists of 3x3x3
convolution, instance normalization, LeakyReLU activation (negative slope=0.01),
and two residual blocks. The residual block structure is ResidualBlock(z) =
LeakyReLU (InstanceNorm(Conv3Dgx3x3(2)) 4+ «), with residual connections match-
ing dimensions through 1x1x1 projection. The downsampling strategy employs
Conv3Dayaxa (stride=2). After cross-attention interaction and concatenation at each
scale, the encoder bottleneck layer outputs dimensions of (B, 768,8,8,8), downsam-
pling by 2* = 16 times relative to input.
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The decoder adopts symmetric 5-layer upsampling paths, with each layer using
ConvTranspose3Dayaxo (stride=2) to restore spatial resolution. Each decoder block
concatenates upsampled features with skip connections from corresponding encoder
layers, then fuses through 3x3x3 convolution, instance normalization, LeakyReL U
activation, and residual blocks. Deep supervision adds 1x1x1 convolution heads
at each decoder layer to output intermediate predictions. Final decoder output
dimensions are (B, 32,128,128, 128).

The dual-level fusion module includes three confidence estimators with structure:
Conv3D3x3x3(C — C/2) — InstanceNorm — LeakyReLU — Conv3Djy1x1(C/2 —
1) — Sigmoid. The hypernetwork generates 256-dimensional conditional vectors
from the 768-channel bottleneck layer through global average pooling and lin-
ear projection; vy and [ generator structures are Linear(256—128) — ReLU —
Linear(128—('). Semantic and topological generators employ single-layer 3x3x3 con-
volutions (768—768), followed by instance normalization and LeakyReLU activation.
The unified prior fusion module’s energy MLP structure is: Conv3D1x1x1(C—C/2)
— InstanceNorm — LeakyReLU — Conv3Djx1x1(C/2—3).

The nested output head includes three cascaded 1x1x1 convolution projection
layers, outputting 61, 02, 03 intermediate parameters. Stick-breaking parameterization
is: pwt = 0(01), prc = pwr - 0(02), per = prc - 0(03). Network input consists of
4-sequence original MRI and 3-channel differential features, with final output being
3-channel probability maps (WT, TC, ET).

Appendix B Loss Function Weight Tuning

Loss function weight coefficients are optimized through grid search on the validation
set. Dice and BCE weights in basic segmentation loss Ly, are fixed at 1.0:0.5, Dice
loss employs smoothing parameter ¢ = 107°, and BCE loss is computed in FP32
precision by disabling autocast. Search spaces for auxiliary losses are: Anjerarchy €
{0.1,0.3,0.5,0.7}, Acontinuity € {0.1,0.2,0.3,0.5}, Atopology € {0.1,0.2,0.3,0.4}. Each
hyperparameter configuration trains for 50 epochs on the validation set, recording
mean Dice coefficient and HD95 distance.

Deep supervision loss weight is set to 0.3, computing Dice and BCE losses
for intermediate predictions from the first 4 decoder layers; each intermediate
prediction is trilinearly interpolated to (B,3,128,128,128) before applying sig-
moid activation, with weight coefficient 0.5. Hierarchical constraint loss formula is
Lhierarchy = 1] 2zemax(0, ppr(z) — pro(z)) + max(0, pre (@) — pwr(z))]. Spatial
continuity loss is based on 26-connected neighborhoods, with formula Lcontinuity =

BT e Eacar e (a) Ll - exp(—a|Vinea(®)]|2), where dyy s physical

Y

distance and o = 2.0. Gradient clipping threshold is set to || V|2 < 1.0.

Appendix C Training Hyperparameters and Data
Augmentation

Training hyperparameters are determined through grid search. The optimizer employs
AdamW with initial learning rate 2 x 10~%. Learning rate scheduling adopts cosine
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annealing strategy with Tju., = 300 epochs, final learning rate decaying to 1 x 1072 of
initial value. Weight decay coefficient is 1 x 10~%. Batch size is set to 2, total training
epochs 300, early stopping patience 15 epochs. Gradient clipping threshold ||V||2 < 1.0.
Mixed precision training employs PyTorch’s autocast and GradScaler, with forward
propagation and loss computation in FP16 precision, gradient accumulation and
parameter updates in FP32 precision. Binary cross-entropy loss explicitly disables
automatic mixed precision through torch.cuda.amp.autocast (enabled=False).

Data augmentation strategies include geometric transformations: random flipping
(along axial, coronal, sagittal planes, probability 0.5 each), random rotation (uniformly
sampled within £15 range), random scaling (factor range [0.9,1.1]), elastic deforma-
tion (o = 30, 0 = 5). Intensity transformations include: contrast adjustment (factor
range [0.8,1.2]), brightness adjustment (additive noise A/(0,0.1)), Gamma correction
(v € [0.7,1.5]). All transformation probabilities are set to 0.5, randomly combining 2-3
transformations during training. Intelligent sampling strategy employs 33% probabil-
ity for foreground sampling (centered on tumor voxels, adding +patch_size/4 random
offsets), 67% probability for random sampling.

Normalization includes preprocessing normalization and differential feature nor-
malization. Preprocessing normalization performs Z-score standardization for each
modality: Inorm = (I — fbrain)/(Obrain + €), Where fiprain and oprain are mean and
standard deviation of brain region voxels, ¢ = 1078. Differential feature normal-
ization: enhancement difference Degphance and necrosis contrast Dpecrosis undergo
logarithmic compression (sign(z) - log(1 + |z|)), quantile clipping (1%-99%), and min-
max normalization to [0,1]; edema difference Degoma directly undergoes min-max
normalization.

Appendix D Evaluation Metric Computation Details

Dice coefficient employs formula: Dice(P, G) = (2|PNG|+¢)/(|P|+|G|+€), where e =
107°. Computation process: prediction probabilities are binarized to masks through
threshold 0.5 P = (p > 0.5), computing Dice per sample per class. For 369 test cases,
Dice coefficients are computed separately for three regions: WT, TC, ET. Statistical
aggregation includes mean, standard deviation, 95% confidence interval (computed
via t-distribution, CI = Z =+ t9.975,n—1 - S/V/1, to.975,368 =~ 1.967), median, quartiles,
skewness, kurtosis.

95% Hausdorff distance (HD95) is computed according to BraTS standard pro-
tocol. Surface extraction employs Surface(M) = M \ Erosion(M, K), with structural
element K being 6-connected (3 x 3 x 3 kernel). If prediction or ground truth label
is empty, HD95 returns NaN and is excluded from statistics. After extracting surface
coordinates, multiply by voxel spacing (1.0,1.0,1.0) mm to convert to physical dis-
tance. Distance computation is implemented through scipy.spatial.cKDTree; for each
point spreq on prediction surface, query d(spred, Sgt) = minges,, ||Sprea —5'[|2; for each
point sg¢ on ground truth surface, query d(sgt, Spred). Merging both distance groups
yields bidirectional distance set D = {d(sp, Sg)}s,es, U {d(sg,Sp)}s,es,; computing
the 95th percentile gives HD95.
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Statistical significance testing employs paired sample t-tests. For two configura-
tions, compute Dice coefficients on 369 cases respectively, forming paired samples
{(z14, x2;) ?291; compute differences d; = x1; — x2; and their mean d and standard
deviation sg; test statistic is t = d/(s4/v/369), finding p-value under t-distribution
with degrees of freedom df = 368. Cohen’s d effect size is computed through d =
(11 — p2)/v/1(n1 — 1)s? + (na — 1)s3]/(n1 + n2 — 2), with interpretation standards:
small effect d = 0.2, medium effect d = 0.5, large effect d = 0.8.

Appendix E Qualitative Visualization Analysis of
Representative Cases

Figure 6 presents detailed segmentation results and attention mechanism visualization
for STPF framework on three representative cases. Each case includes four-sequence
input images (T1, Tlce, T2, FLAIR), overlay view of ground truth and predic-
tions (GT/Pred Overlay), error distribution map, independent segmentation results
and Dice coefficients for three tumor sub-regions, and attention heatmaps at various
encoder-decoder layers. The three cases exhibit different pathological features and seg-
mentation challenges: Case 1 (top) presents large glioma with clear tumor core and
obvious enhancing region, achieving good performance in WT and TC regions (Dice of
0.9173 and 0.9517 respectively), with error map showing only 210 error pixels mainly
concentrated at ET-TC interface. Case 2 (middle) displays tumor with ambiguous
boundaries, with ring enhancement structure in T1ce sequence challenging precise ET
delineation; nevertheless, STPF still achieves 0.8812 ET Dice coefficient, with 342
error pixels mainly distributed at enhancement edges, thereby validating tri-modal
knowledge prior fusion discriminative capability in uncertain boundary regions. Case 3
(bottom) contains irregular morphology and necrotic regions, with relatively complex
WT region but good TC and ET segmentation performance (Dice of 0.9398 and 0.9129
respectively), with 388 error pixels reflecting inherent ambiguity of edema bound-
aries. Attention mechanism analysis shows encoder early layers (encO-encl) present
broad global receptive fields; progressing to enc2 layer begins focusing on high-contrast
regions; decoder layers (decl-dec0) gradually converge attention to tumor boundaries,
with decO layer precisely locating ET region core positions in all three cases. This
progressive focusing pattern validates multi-scale feature pyramid effectiveness and
confidence-driven adaptive weight allocation mechanism in dual-level fusion archi-
tecture—visual modality dominates in clear boundary regions, while attention shifts
toward geometric constraints in signal-ambiguous but topologically-stable regions.
Error pattern analysis reveals failure pixels mainly concentrate in three region types:
ET-TC interface (subjectivity of contrast enhancement signal threshold determina-
tion), WT periphery edema boundaries (T2/FLAIR signal gradient transitions), and
small isolated regions (possible false positives or annotation differences). Notably, error
pixel counts (210-388) represent small proportions relative to total voxels (< 0.02%),
with no topologically unreasonable structures (such as ET independently existing
apart from TC), thereby proving effectiveness of nested output heads and topologi-
cal constraints. Dice bar charts for three cases show consistent patterns: WT and TC
region Dice coefficients stabilize in 0.88-0.95 range, reflecting robustness of large-scale
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structure segmentation; ET region Dice range is broader (0.8418-0.9129), embodying
increased difficulty of small lesion detection tasks, which is consistent with standard
deviation distribution reported in Table 3 (ET standard deviation 0.179 higher than
WT’s 0.101). Even in challenging cases, STPF maintains all sub-region Dice>0.84,
thereby validating knowledge-guided method stability and multi-modal redundancy
compensatory capability on difficult cases.Overall, these qualitative patterns support
the interpretation that STPF relies primarily on visual evidence in clear-cut regions,
while semantic and topological priors are upweighted in visually ambiguous areas to
refine boundaries and enforce anatomically and topologically plausible solutions.

References

[1]

(6]

Voigtlaender, S., Nelson, T.A., Karschnia, P., Vaios, E.J., Kim, M.M., Lohmann,
P., Galldiks, N., Filbin, M.G., Azizi, S., Natarajan, V., Monje, M., Dietrich,
J., Winter, S.F.: Value of artificial intelligence in neuro-oncology. Lancet Digi-
tal Health (2025) https://doi.org/10.1016/j.landig.2025.100876 . Published online
Aug. 2025, Art. No. 100876

Ostrom, Q.T'., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., Barnholtz-
Sloan, J.S.: CBTRUS Statistical Report: Primary Brain and Other Central
Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro-
Oncology 24(Suppl.5), 1-95 (2022) https://doi.org/10.1093 /neuonc/noac202 .
Contains epidemiological data (gliomas ~80% of malignant brain tumors, <10%
5-year survival for GBM).

Wan, B., Hu, B., Zhao, M., Li, K., Ye, X.: Deep learning-based magnetic resonance
image segmentation technique for application to glioma. Frontiers in Medicine 10,
1172767 (2023) https://doi.org/10.3389/fmed.2023.1172767 . Replaced reference.
Original citation not found. This paper addresses glioma segmentation for clinical
diagnosis and treatment planning.

Bianconi, A., Rossi, L.F., Bonada, M., Zeppa, P., Nico, E., De Marco, R.,
Lacroce, P., Cofano, F., Bruno, F., Morana, G., Melcarne, A., Ruda, R., Mainardi,
L., Fiaschi, P., Garbossa, D., Morra, L.: Deep learning-based algorithm for
postoperative glioblastoma MRI segmentation: a promising new tool for tumor
burden assessment. Brain Informatics 10, 26 (2023) https://doi.org/10.1186/
s40708-023-00207-6 . Replaced reference. Original citation not found. This paper
addresses postoperative glioblastoma segmentation for clinical assessment and
treatment planning.

Abbad Andaloussi, M., Maser, R., Hertel, F., Lamoline, F., Husch, A.D.: Explor-
ing adult glioma through MRI: A review of publicly available datasets to guide
efficient image analysis. Neuro-Oncology Advances 7(1), 197 (2025) https://doi.
org/10.1093 /noajnl/vdael197

Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Colak, E., Calabrese, E.,

33


https://doi.org/10.1016/j.landig.2025.100876
https://doi.org/10.1093/neuonc/noac202
https://doi.org/10.3389/fmed.2023.1172767
https://doi.org/10.1186/s40708-023-00207-6
https://doi.org/10.1186/s40708-023-00207-6
https://doi.org/10.1093/noajnl/vdae197
https://doi.org/10.1093/noajnl/vdae197

[15]

[16]

Shinohara, R.T., Davatzikos, C., Flanders, A.E., Menze, B., Bakas, S.: The
RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation
and Radiogenomic Classification. arXiv preprint arXiv:2107.02314 (2021)

Bonato, B., Nanni, L., Bertoldo, A.: Advancing Precision: A Comprehensive
Review of MRI Segmentation Datasets from BraTS Challenges (2012-2025).
Sensors 25(6), 1838 (2025) https://doi.org/10.3390/s25061838

Bakas, S., Pati, S., Menze, B., Reyes, M.: BraTS 2025 “Lighthouse” Chal-
lenge: brain metastases, meningiomas, and beyond. BraTS Challenge Announce-
ment (Synapse Repository). Accessed 2025. URL: https://www.synapse.org/#!
Synapse:syn64153130 (2025)

LaBella, D., Baid, U., Khanna, O., al.: Analysis of the BraTS 2023 Intracranial
Meningioma Segmentation Challenge. Machine Learning in Biomedical Imaging
(MELBA) 2, 3 (2025) https://doi.org/10.59275/j.melba.2025-003

Moawad, A.W., Janas, A., Baid, U., al.: The Brain Tumor Segmentation (BraTS-
METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI.
arXiv preprint arXiv:2306.00838 (2023). 231 co-authors

Jiang, Z., Wan, L., Fu, H., Yang, G., Zhu, L.: The BraTS-Path 2023 Challenge:
Segmenting Brain Tumors in Pathology Images. BraTS Pathology Challenge
Report (arXiv preprint arXiv:2309.XXXXX) (2024)

Isensee, F., Jaeger, P.F., Kohl, S.A.A.] Petersen, J., Maier-Hein, K.H.: nnU-
Net: a self-configuring method for deep learning-based biomedical image seg-
mentation. Nature Methods 18(2), 203-211 (2021) https://doi.org/10.1038/
$41592-020-01008-z

Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin
UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI
Images. arXiv preprint arXiv:2201.01266 (2022)

Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: SegMamba: Long-Range Sequential
Modeling Mamba for 3D Medical Image Segmentation. In: Medical Image Com-
puting and Computer Assisted Intervention — MICCAI 2024. Lecture Notes in
Computer Science, vol. 15009, pp. 578-588. Springer, 777 (2024). https://doi.org/
10.1007/978-3-031-72111-3_54

Xing, Z., Zhu, L.: SegMamba-v2: State-Space Long Sequence Modeling for
Enhanced 3D Segmentation. arXiv preprint arXiv:2307. XXXXX (2025)

Xing, Z., Wan, L., Fu, H., Yang, G., Zhu, L.: Diff-UNet: A diffusion embedded
network for robust 3D medical image segmentation. Medical Image Analysis 105,
103654 (2025) https://doi.org/10.1016/j.media.2025.103654

34


https://doi.org/10.3390/s25061838
https://www.synapse.org/#!Synapse:syn64153130
https://www.synapse.org/#!Synapse:syn64153130
https://doi.org/10.59275/j.melba.2025-003
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1007/978-3-031-72111-3_54
https://doi.org/10.1007/978-3-031-72111-3_54
https://doi.org/10.1016/j.media.2025.103654

[17]

[18]

[19]

[23]

Ding, W., Fan, C., Wang, G., Shi, Y., Liu, F.: FDiff-Fusion: Denoising diffu-
sion fusion network based on fuzzy learning for 3D medical image segmentation.
Information Fusion 112, 102540 (2024) https://doi.org/10.1016/j.inffus.2023.
102540

Xing, Z., Wan, L., Fu, H., Yang, G., Zhu, L.: HybridMIM: A hybrid masked
image modeling framework for 3D medical image segmentation. IEEE Journal of
Biomedical and Health Informatics 28(4), 2115-2125 (2024) https://doi.org/10.
1109/JBHI.2023.3290285

Cheng, Z., Yuan, D., Zhang, W., Lukasiewicz, T.: Effective and Efficient Medical
Image Segmentation with Hierarchical Context Interaction. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp. 9396-9406 (2025). https://doi.org/10.1109/WACV61041.2025.00910

Podobnik, G., Vrtovec, T.: Understanding implementation pitfalls of distance-
based metrics for image segmentation. arXiv preprint arXiv:2410.02630 (2024)

Jaeger, P.F., Zweig, K.A., Burke, E., Schoffski, O., Koenig, M., Zimmer, V.A.
Sheet, D., Mehl, S., Wagner, P., Neher, P.F., Reyes, M., Maier-Hein, L., Reinke,
A.: Metrics reloaded: recommendations for image analysis validation. Nature
Methods 21(2), 195-212 (2024) https://doi.org/10.1038/s41592-023-02151-z

Zhang, S., Xu, Y., Usuyama, N., Xu, H., Bagga, J., Tinn, R., Preston, S.,
Rao, R., Wei, M., Valluri, N., Wong, C., Tupini, A., Wang, Y., Mazzola, M.,
Shukla, S., Liden, L., Gao, J., Crabtree, A., Piening, B., Bifulco, C., Lungren,
M.P., Naumann, T., Wang, S., Poon, H.: BiomedCLIP: a multimodal biomedi-
cal foundation model pretrained from 15 million image—text pairs. arXiv preprint
arXiv:2303.00915 (2023). version 3 updated Jan. 2025

Boecking, J., Chico, L., Camacho, J., Syeda-Mahmood, T., Pfohl, S., Saleh, E.,
Gupta, S., Lungren, M.P., Mong, D., Singh, R., Rajpurkar, P., Ball, R.: Making
the Most of Text Semantics to Improve Biomedical Vision—Language Processing.
In: Advances in Neural Information Processing Systems (NeurIPS) — Workshop
on Medical Imaging Meets NeurIPS (2022). arXiv:2204.09817

Huemann, Z., Tie, X., Hu, J., Bradshaw, T.J.: ConTEXTual Net: A Multimodal
Vision—Language Model for Segmentation of Pneumothorax. arXiv preprint
arXiv:2303.01615 (2023)

Huang, S., Liang, H., Wang, Q., Zhong, C., Zhou, Z., Shi, M.: SEG-SAM:
Semantic-Guided SAM for Unified Medical Image Segmentation. arXiv preprint
arXiv:2412.12660 (2024)

Clough, J.R., Byrne, N., Oksuz, 1., Zimmer, V.A., Schnabel, J.A., King, A.P.: A
topological loss function for deep-learning based image segmentation using persis-
tent homology. IEEE Transactions on Pattern Analysis and Machine Intelligence

35


https://doi.org/10.1016/j.inffus.2023.102540
https://doi.org/10.1016/j.inffus.2023.102540
https://doi.org/10.1109/JBHI.2023.3290285
https://doi.org/10.1109/JBHI.2023.3290285
https://doi.org/10.1109/WACV61041.2025.00910
https://doi.org/10.1038/s41592-023-02151-z

[27]

[28]

[29]

[32]

44(12), 8766-8778 (2022) https://doi.org/10.1109/TPAMIL.2020.3013679

Andlauer, T.K., Gaudeau-Bosma, C., Yger, P., Gori, P., Colliot, O.: Topological
data analysis for medical image processing: A literature review. medRxiv preprint
(2025) https://doi.org/10.1101/2025.02.21.25322669

Cicek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-
net: Learning dense volumetric segmentation from sparse annotation. In: Medical
Image Computing and Computer-Assisted Intervention —- MICCAIT 2016, pp. 424—
432. Springer, 77?7 (2016)

Myronenko, A.: 3d mri brain tumor segmentation using autoencoder regulariza-
tion. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries. Lecture Notes in Computer Science, vol. 11384, pp. 311-320. Springer,
777 (2019). https://doi.org/10.1007/978-3-030-11726-9_28

Cardoso, M.J., al.: Monai: An open-source framework for deep learning in
healthcare. arXiv preprint arXiv:2211.02701 (2022)

Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A.: UNETR: Trans-
formers for 3D Medical Image Segmentation. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pp. 574-584
(2022)

Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: Multimodal
Brain Tumor Segmentation Using Transformer. In: Medical Image Computing
and Computer Assisted Intervention — MICCAI 2021. Lecture Notes in Computer
Science, vol. 12901, pp. 109-119. Springer, 7?7 (2021). https://doi.org/10.1007/
978-3-030-87193-2_11

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou,
Y.: TransUNet: Rethinking the U-Net architecture design for medical image seg-
mentation through the lens of transformers. Medical Image Analysis 97, 103280
(2024) https://doi.org/10.1016/j.media.2024.103280

Jiang, Y., Zhang, Y., Lin, X., Dong, J., Cheng, T., Liang, J.: SwinBTS: A Method
for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer. Brain
Sciences 12(6), 797 (2022) https://doi.org/10.3390/brainscil2060797

Lin, J., Lin, J., Lu, C.; Chen, H., Lin, H., Zhao, B., Shi, Z., Qiu, B., Pan,
X., Xu, Z., Huang, B., Liang, C., Han, G., Liu, Z., Han, C.: CKD-TransBTS:
Clinical Knowledge-Driven Hybrid Transformer with Modality-Correlated Cross-
Attention for Brain Tumor Segmentation. IEEE Transactions on Medical Imaging
42(8), 2451-2461 (2023) https://doi.org/10.1109/TMI.2023.3250474

Chen, J., Zhang, J., Debattista, K., Han, J.: Semi-supervised unpaired medi-
cal image segmentation through task-affinity consistency. IEEE Transactions on

36


https://doi.org/10.1109/TPAMI.2020.3013679
https://doi.org/10.1101/2025.02.21.25322669
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1007/978-3-030-87193-2_11
https://doi.org/10.1007/978-3-030-87193-2_11
https://doi.org/10.1016/j.media.2024.103280
https://doi.org/10.3390/brainsci12060797
https://doi.org/10.1109/TMI.2023.3250474

[37]

[38]

Medical Imaging 42, 594-605 (2023) https://doi.org/10.1109/TMI1.2022.3213372

Chen, J., Chen, C., Huang, W., Zhang, J., Debattista, K., Han, J.: Dynamic
contrastive learning guided by class confidence and confusion degree for medical
image segmentation. Pattern Recognition 145, 109881 (2024) https://doi.org/10.
1016/j.patcog.2023.109881

Chen, J., Huang, W., Zhang, J., Debattista, K., Han, J.: Addressing incon-
sistent labeling with cross image matching for scribble-based medical image
segmentation. IEEE Transactions on Image Processing 34, 842-853 (2025) https:
//doi.org/10.1109/TIP.2025.3530787

Chen, J., Li, W., Li, H., Zhang, J.: Deep class-specific affinity-guided con-
volutional network for multimodal unpaired image segmentation. In: Medical
Image Computing and Computer Assisted Intervention — MICCAI 2020. Lec-
ture Notes in Computer Science, pp. 187-196 (2020). https://doi.org/10.1007/
978-3-030-59719-1_19

Chen, J., Duan, H., Zhang, X., Gao, B., Grau, V., Han, J.: From Gaze to
Insight: Bridging Human Visual Attention and Vision-Language Model Expla-
nation for Weakly-Supervised Medical Image Segmentation. arXiv preprint
arXiv:2504.11368. Last revised October 2025 (2025). https://arxiv.org/abs/2504.
11368

Radford, A., Kim, J.W., Xu, T., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning
Transferable Visual Models From Natural Language Supervision. In: Proceedings
of the 38th International Conference on Machine Learning (ICML). Proceedings
of Machine Learning Research, vol. 139, pp. 8748-8763 (2021)

Zhang, W., Yu, P.S.: Graph Neural Networks in Biomedical Image Analysis: A
Comprehensive Survey. arXiv preprint arXiv:2301.04124 (2023)

Cao, X., Wang, L., Chen, Z., Shi, F., Fishman, E.K., Yuille, A., Xu, D.: Graph-
CNN Hybrid Inference for Multi-Class Brain Tumor Segmentation. In: Medical
Image Computing and Computer-Assisted Intervention — MICCAT 2024. Lecture
Notes in Computer Science, vol. 14233, pp. 42-52. Springer, 77?7 (2024)

Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
Attention Networks. In: International Conference on Learning Representations
(ICLR) (2018)

Chen, H., Qi, X., Heng, P.-A., Dou, Q.: ASC-Net: Adversarial-Based Selective
Cutting for Unsupervised Anomaly Segmentation. In: Medical Image Computing
and Computer-Assisted Intervention - MICCAT 2021. Lecture Notes in Computer
Science, vol. 12902, pp. 729-740. Springer, 7?7 (2021). https://doi.org/10.1007/
978-3-030-87234-2_69

37


https://doi.org/10.1109/TMI.2022.3213372
https://doi.org/10.1016/j.patcog.2023.109881
https://doi.org/10.1016/j.patcog.2023.109881
https://doi.org/10.1109/TIP.2025.3530787
https://doi.org/10.1109/TIP.2025.3530787
https://doi.org/10.1007/978-3-030-59719-1_19
https://doi.org/10.1007/978-3-030-59719-1_19
https://arxiv.org/abs/2504.11368
https://arxiv.org/abs/2504.11368
https://doi.org/10.1007/978-3-030-87234-2_69
https://doi.org/10.1007/978-3-030-87234-2_69

[46]

Behrendt, F., Zimmerer, D., Hering, J., Wiesenfarth, M., Kleesiek, J.: Leverag-
ing the Mahalanobis Distance to Enhance Unsupervised Brain MRI Anomaly
Detection. In: Medical Image Computing and Computer-Assisted Intervention
— MICCALI 2024. Lecture Notes in Computer Science, vol. 14349, pp. 377-387.
Springer, 77?7 (2024). https://doi.org/10.1007/978-3-031-43887-0_36

Pinaya, W.H.L., Mehl, S., Martin, I., Bass, C., Page, D., Cardoso, M.J., Ourselin,
S., Vercauteren, T.: Diffusion models for unsupervised anomaly detection in
brain MRIs. arXiv preprint arXiv:2308.10150 (2023). Accepted at ICLR 2025 (to
appear)

Zhou, H., al.: Relative mamc: Multi-attention multi-contrast mri tumor segmen-
tation. arXiv:2104.03309 (2021)

Xing, Z., Yu, L., Wan, L., Han, T., Zhu, L.: Nestedformer: Nested modality-
aware transformer for brain tumor segmentation. In: Medical Image Computing
and Computer Assisted Intervention — MICCAI 2022, pp. 140-150 (2022). https:
//doi.org/10.1007/978-3-031-16443-9_14

Cheng, Z., al.: Cmaf-net: Cross-modality attention fusion network for brain tumor
segmentation. Quantitative Imaging in Medicine and Surgery (2024)

Kumar, M., Rai, P., Canini, K., Kottur, S., Sontag, D., Daumé III, H.: Figure
1: Stick-Breaking Variational Autoencoders. arXiv preprint arXiv:1802.04335
(2020). (Original concept of stick-breaking process in variational inference.)

Rolls, E.T., Huang, C., Lin, C., Feng, J.: Automated anatomical labeling atlas
3. Human Brain Mapping 41(8), 2145-2157 (2020) https://doi.org/10.1002/hbm.
24915

Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In: Proceedings of the 4th
International Conference on 3D Vision (3DV), pp. 565-571 (2016). https://doi.
org/10.1109/3DV.2016.79

Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Interna-
tional Conference on Learning Representations (ICLR) (2019)

Oktay, O., Schlemper, J., Le Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori,
K., McDonagh, S., Hammerla, N.Y., Kainz, B., Glocker, B., Rueckert, D.: Atten-
tion u-net: Learning where to look for the pancreas. In: Medical Imaging with
Deep Learning (MIDL) 2018 (2018). https://arxiv.org/abs/1804.03999

Feng, Y., Cao, Y., An, D.; Liu, P., Liao, X., Yu, B.: Daunet: A u-shaped net-
work combining deep supervision and attention for brain tumor segmentation.
Knowledge-Based Systems 285, 111348 (2024) https://doi.org/10.1016/j.knosys.
2023.111348

38


https://doi.org/10.1007/978-3-031-43887-0_36
https://doi.org/10.1007/978-3-031-16443-9_14
https://doi.org/10.1007/978-3-031-16443-9_14
https://doi.org/10.1002/hbm.24915
https://doi.org/10.1002/hbm.24915
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1016/j.knosys.2023.111348
https://doi.org/10.1016/j.knosys.2023.111348

[57]

[61]

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal,
C., Jodoin, P.-M., Larochelle, H.: HeMIS: Hetero-Modal Image Segmentation. In:
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2016,
DLMIA Workshop. Lecture Notes in Computer Science, vol. 10008, pp. 469-477.
Springer, 77?7 (2016). https://doi.org/10.1007/978-3-319-46976-8_47

Zhou, Y., Feng, Z., Lv, X., Zhang, Z., Jia, X., Wu, G.: A literature survey
of MR-based brain tumor segmentation with missing modalities. Computerized
Medical Imaging and Graphics 104, 102055 (2023) https://doi.org/10.1016/j.
compmedimag.2022.102055

Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou, A.,
Milchenko, M., Xu, W., Marcus, D., Colen, R.R., Bakas, S.: Federated learn-
ing in medicine: facilitating multi-institutional collaborations without sharing
patient data. Scientific Reports 10(1), 12598 (2020) https://doi.org/10.1038/
$41598-020-69250-1

Pati, S., Baid, U., Edwards, B., Sheller, M.J., Bakas, S., et al.: Towards fair
decentralized benchmarking of healthcare AI algorithms with the Federated
Tumor Segmentation (FeTS) challenge. Nature Communications 15(1), 4775
(2024) https://doi.org/10.1038/s41467-024-47437-5 . Large multi-institutional
benchmark for federated tumour segmentation.

Ahamed, M.F., Hossain, M.M., Nahiduzzaman, M., Islam, M.R.., Noman, M.A.A.|
Rahman, M.A., Hasan, M.A.: A review on brain tumor segmentation based
on deep learning methods with federated learning techniques. Computerized
Medical Imaging and Graphics 109, 102313 (2024) https://doi.org/10.1016/j.
compmedimag.2023.102313

39


https://doi.org/10.1007/978-3-319-46976-8_47
https://doi.org/10.1016/j.compmedimag.2022.102055
https://doi.org/10.1016/j.compmedimag.2022.102055
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1038/s41467-024-47437-5
https://doi.org/10.1016/j.compmedimag.2023.102313
https://doi.org/10.1016/j.compmedimag.2023.102313

	Introduction
	Related Work
	Deep Learning for Brain Tumor Segmentation
	Semantic Knowledge Integration
	Topological and Geometric Constraints
	Multi-modal MRI Feature Fusion

	Method
	Multi-modal Prior Generation
	Visual Enhancement Modality: Multi-modal Differential Feature Construction as Pathological Knowledge Prior
	Topological Modality: Geometric Structure Prior Extraction as Morphological Knowledge
	Semantic Modality: Structured Region Description and Spatialization as Anatomical Knowledge

	Dual-Level Fusion Architecture
	Decoder Layer-wise Fusion
	Unified Prior Fusion Module
	Nested Output Head

	Loss Function Design

	Experiments
	Dataset and Experimental Setup
	Comparison with State-of-the-Art Methods
	Detailed Statistical Analysis of Dice Coefficient Distribution
	Dice Coefficient Percentile Distribution Analysis
	Five-Fold Cross-Validation Stability Analysis
	Loss Function Ablation Experiments
	Statistical Significance Testing
	Robustness Analysis
	Qualitative Visualization Analysis of Representative Cases
	Model Scale and Computational Efficiency Analysis

	Discussion
	Conclusion
	Network Architecture Details
	Loss Function Weight Tuning
	Training Hyperparameters and Data Augmentation
	Evaluation Metric Computation Details
	Qualitative Visualization Analysis of Representative Cases

