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ABSTRACT

Timely and objective screening of major depressive disorder (MDD)
is vital, yet diagnosis still relies on subjective scales. Electroen-
cephalography (EEG) provides a low-cost biomarker, but existing
deep models treat spectra as static images, fix inter-channel graphs,
and ignore prior knowledge, limiting accuracy and interpretability.
We propose ELPG-DTFS, a prior-guided adaptive time—frequency
graph neural network that introduces:(1) channel-band attention
with cross-band mutual information, (2) a learnable adjacency ma-
trix for dynamic functional links, and (3) a residual knowledge-
graph pathway injecting neuroscience priors. On the 128-channel
MODMA dataset (53 subjects), ELPG-DTFS achieves 97.63%
accuracy and 97.33% F1, surpassing the 2025 state-of-the-art ACM-
GNN. Ablation shows that removing any module lowers F1 by
up to 4.35, confirming their complementary value. ELPG-DTFS
thus offers a robust and interpretable framework for next-generation
EEG-based MDD diagnostics.

Index Terms— EEG, Channel-Band Attention, Mutual Infor-
mation, Learnable Adjacency, Prior Knowledge

1. INTRODUCTION

Major depressive disorder (MDD) affects more than 350 million
people and is projected to become the leading cause of global dis-
ability within the next decade [1, 2. Rapid, objective screening is
therefore a public-health priority, yet diagnosis still rests on Self-
rating and peer-rating scales and doctors’ subjective experience[3]].
Electroencephalography (EEG) is a non-invasive, portable, low-cost
method for measuring brain function with high millisecond tempo-
ral resolution[4} [5]]. It is objective and can effectively distinguish
between depressed and normal patients.

Traditional machine learning can detect some features, but it re-
quires labor-intensive feature creation and aggressive dimensionality
reduction[6} [7, 8, |9, [10]]. Although end-to-end convolutional neural
networks (CNNs) reduce the burden of manual design[11} [12]], they
often treat EEG as static images and fail to fully utilize network-
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Fig. 1. A simplified diagram of the core skeleton of the model

level physiological information. Recent graph convolutional net-
works (GCNs)begin to model cross-channel interactions[/13} 14} [15}
16]], but three limitations remain:

 Static time—frequency modeling: transforming short-time
spectra into fixed pictures blurs transient neural bursts that
mark mood shifts.

* Rigid connectivity: binarized Pearson graphs omit weak yet
meaningful couplings and ignore their temporal drift.

* Lack of domain priors: decades of electrophysiology are
rarely encoded, forcing networks to relearn well-established
biology.

Our solution. We propose ELPG-DTFS, which unifies the
channel-band attention module, mutual information across fre-
quency bands, adaptive graph learning, and residual knowledge

input into an end-to-end process, as shown in Figure
* Window-level channel-band attention highlights diag-
nostically salient electrodes and rhythms while embedding
mutual-information cross-band cues, enabling the network to
track millisecond transients that static images miss.

* Learnable adjacency-weight matrix substitutes hard thresh-
olds with trainable edge strengths, capturing weak but infor-
mative connectivity and its evolution across windows.

* Residual knowledge-graph pathway injects curated neuro-
science priors—brain-region roles, structural links, clinical
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heuristics—into each graph layer, regulated by a residual gate
that prevents over-constraining data-driven learning.

Impact. Evaluated on MODMA (24 MDD, 29 control),
ELPG-DTFS attains 97.63 % accuracy and a 97.33 % F1-score,
outperforming the 2025 state of the art by up to 2.57 percentage
points. Ablation studies reveal that removing any single module
reduces F1 by as much as 4.35 points, confirming their complemen-
tary utility. By fusing dynamic signal processing with prior-guided
graph learning, ELPG-DTFS moves EEG-based depression screen-
ing a decisive step toward the clinic, offering an interpretable, and
readily deployable tool for mental-health care.

2. METHOD

Figure outlines the complete ELPG-DTFS pipeline. To con-
vince both theoreticians and practitioners, this section first estab-
lishes firm analytical foundations, then details each network com-
ponent. All matters regarding data acquisition and preprocessing are
deferred to Section Experiments, so that the exposition here remains
entirely model—centric.

2.1. Analytical Foundations

Notation: V and £ denote the vertex and edge sets of an EEG graph
G = V,&) with [V| = N = 128. X € RY*C is a node-
feature matrix and A € RQ’OXN a weighted, directed adjacency ma-
trix (A;; # A j; captures asymmetric coupling).

Graph signal processing: The normalized Laplacian L=D 2AD

(Dsi = 3, Ayj) supports spectral filtering
H(l+1) _ O’(EH(Z)W(Z)), H(O) =X, 1

where o(-) is ReLU and W trainable. Eq. (T) is permutation-
equivariant, so learnt kernels transfer across subjects.
Information-theoretic biomarkers: For a zero-mean narrow-band
process x(t), differential entropy is h(z) = 1 log(2mec?), where
o2 is the band power. Differential entropy (DE) therefore general-
izes log-power but remains translation invariant. Given two bands
b1, b2, their mutual information

MI(b1,b2) = H(b1) + H(b2) — H(b1,b2) 2)

quantifies non-linear cross-frequency coupling, an established
marker of mood disorders.

Attention as Bayesian feature selection: Let Z € {0,1}"*% be
a binary channel-band mask (B is the number of frequency bands).
ELPG-DTFS models ¢(Z) with independent Bernoulli variables and
maximizes

L =Eqz)log p(Y | X, Z)] =B Dxr(q(Z)lpo(2)),

expected fit

where po is a sparsity-promoting prior and (3 a hyper-parameter. This
casts attention as variational feature selection and guarantees that the
learnt mask is the most compact that still explains the data.
Residual prior fusion: Let P € RV *¢ encode domain knowledge
(Sec.[2:4)2.6). The gated residual combines priors and data:

How = Haaa + (U(WgP + bg)) oP, 3)

with W, by initialized so that [[c(W,P + by)|l2 < ||Haaa|2,
ensuring the network starts data-driven and gradually incorporates
priors.

Optimization and convergence: All parameters are updated by
Adam (1r= 107%) under a cross-entropy loss regularized by £»
weight decay 10™%. Because the loss is smooth and Adam uses
bounded steps, the iterates {6, } satisty ||V.L(6;)|| — 0; hence train-
ing converges to a stationary point almost surely [17].

2.2. Node Feature Construction

Windowing: Each 280 s recording is split into 7" = 139 windows
of 4 s with 50 % overlap.

Multi-band tensors: For every window we extract DE features in
{4,0, o, B} bands and pairwise MI as in Eq. (). Stacking yields

B
2

XPE ¢ RNXB7 XM < RNX( )

Channel-band attention: A factorized mask A = &chunagumq
(Achan €[0, 1]%, apana €[0, 1]%) weights electrodes and rhythms:

XPE — A @ XPE )

Temporal modeling: [X°® || X™'] thl is processed by a BiLSTM
(hidden size 64), producing Xpose € RV > with C' = 128.

2.3. Adaptive Graph Construction

Seed adjacency: Pearson correlations form the seed A with
0
A =pisl.
Learnable mask: A trainable matrix W, € [0, 1]V *" modulates
the seed:
A=A"ow,. 5)
Since W,, is initialized to 0.5, edge weights can increase or de-

crease, allowing the network to recover weak yet clinically mean-
ingful couplings.

2.4. Local Spatial Prior

Electrode i, j Euclidean distance d;; (in mm) is converted into
A = min(1, max(0.1,6/d3;)), =6, ©6)

mimicking the biophysical attenuation of field potentials. A% is
added to A before normalization, giving short-range spatial context.

2.5. Mesoscopic Prior via Virtual Centers

Hierarchical parcellation: Based on the Desikan atlas [33] and
hemispheric symmetry, we define nine cortical groups {Gx }5_;.

Self-attention pooling: Within each Gy, a single virtual node is
learned:

Vi = Z softmax(qT tanh(Wanode,i)) Xhode, i s
1€Gg

where q, W, are parameters. Virtual nodes summarize local dy-
namics while keeping the graph sparse.
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Fig. 2. Overview of ELPG-DTFS. DE and MI tensors are refined by channel-band attention and BiLSTM, fed to an adaptive graph informed
by local, mesoscopic and global priors, and finally classified by a residual GCN.

2.6. Global Attention and Spectral Aggregation

3. EXPERIMENTS

Positional embeddlng 3-D coordinates p; are encoded via embed(p;) Fhis section provides an in—depth empirical assessment of ELPG-

[sin(2°7p;) cos(2°7p;) ...] and added to features.

Graph Transformer: A six-head attention layer builds a global ad-
jacency A" =softmax(QK " /v/dk) (dy is the head dimension).
Only the top 25 % edges per node are retained, preventing quadratic
blow-up.

Spectral GCN: Two spectral layers (Eq. (I)) with a residual prior
gate (Eq. (B)) aggregate information from local, mesoscopic, and
global scales. The final node embeddings are max-pooled and
fed to a two-layer MLP classifier.

2.7. Complexity and Convergence

For d = 64, attention costs O(N?d) = 1.05 M FLOPs, GCN costs
O(Ed) = 0.26 M FLOPs (E = 0.25N?). A 280 s record processes
in 0.41ms on an RTX 3090. Peak GPU usage is 211 MB, domi-
nated by multi-head attention weights; this fits modern edge devices
with 4 GB VRAM after 8-bit quantization. Adam with step size
1072 and B12 = (0.9,0.999) guarantees >_, [ VL(6,)[> < oc;
hence ||VL(6:)|| — 0 [17]. Empirically, training stabilizes within 80
epochs.

With these ingredients ELPG-DTFS realizes a mathemati-
cally grounded, fully differentiable framework that jointly exploits
time—frequency structure, adaptive connectivity, and domain priors,
while remaining computationally lightweight and interpretation-
ready.

DTFS. After describing the dataset and preprocessing pipeline, we
detail our experimental protocol, present quantitative comparisons
with strong baselines, offer causal explanations for every perfor-
mance gap, and perform an exhaustive ablation study.

3.1. Dataset and Preprocessing

MODMA corpus: We employ the publicly available MODMA
dataset, which contains five-minute, eyes-closed, resting-state EEG
recorded with 128-channel HydroCel Geodesic Sensor Nets at 250
Hz. The cohort comprises 24 major depressive disorder (MDD)
patients and 29 healthy controls.

Cleaning pipeline: To suppress acclimation and fatigue effects, we
discard the first and last 10 s, retaining 280 s. Signals then undergo:
0.3-30 Hz finite-impulse-response filtering; Window-wise baseline
subtraction; Independent component analysis to remove ocular and
muscular artifacts; Electrode-wise ¢ normalization; Segmentation
into 4 s epochs with 50 % overlap, yielding 7' = 139 epochs per
subject.

3.2. Baselines

Fourteen peer-reviewed methods (2021-2025) are re-implemented
under identical pre-processing and cross-validation protocols to en-
sure a fair comparison, as shown in Table[T} Their hyper-parameters
follow the original papers; grid search on the validation set refines
learning rate and hidden size where the authors had left them am-
biguous.



Table 1. Performance comparison on MODMA (mean of 10 folds).
Bold numbers indicate the best result; § = metric not reported.

Model Acc(%) Pre(%) Rec(%) F1(%)
CGIPool [18] (2021) 73.58 69.23 75.00 75.00
1TD+L-TCN (2021) 86.87 83.83 90.15%  90.15
SGP-SLe (2022) 84.91 80.77 87.54 84.00
CNN+GRU [22] (2022) 90.62 87.48 90.26 88.79
Lattice [?] (2023) 83.96 86.76 76.14 81.10
AMG (23] (2023) 88.68 91.43 87.50 88.17
MDD-MFF (2024) 85.71 83.85 91.72 87.72
SG+RF [23] (2024) 87.87 88.42 89.71 89.06
MGSN (2024) 89.87 93.16 86.07 89.47
SSPA-GCN (2024) 92.87 92.00 92.24 92.12
FLFCFS [28] (2024) 92.59 91.67 93.55 92.60
MCT [29] (2025) 89.84 87.36 89.41 88.37
GNMicxer [30] (2025) 93.12 84.298 84.29 95.17
MFMR-FN (2025) 93.96 94.958 94.95 93.97
ACM-GNN [32] (2025) 95.46 96.23 95.46 95.80
ELPG-DTFS 97.63 96.68 98.03 97.33

3.3. Experimental Protocol

Cross-validation: A subject-wise 10-fold split ensures that no
epoch from a participant appears in both training and test sets.
Within each training fold, 10 % of data serves as a validation set for
early stopping.

Training details: ELPG-DTFES is implemented in PyTorch. We
train with Adam (learning rate 1 x 1073, weight decay 1 x 10™%)
using batch size 32. Training stops if validation loss fails to decrease
for ten epochs. All runs use an NVIDIA RTX 3090 GPU; random
seeds are fixed for reproducibility.

Evaluation metrics: Accuracy (Acc), Precision (Pre), Recall (Rec)
and Fl-score (F1) are reported as mean=+standard deviation across
folds. Wilcoxon signed-rank tests check statistical significance (p <
0.05) against the best baseline.

3.4. Comparative Evaluation

Table [1] summarizes results for fourteen recent methods and ELPG-
DTFS. Our model achieves 97.63 % Acc and 97.33 % F1, outper-
forming ACM-GNN by +2.17 and +1.53 percentage points (p <
0.01). Figure 3] visualizes the margin.

Why does ELPG-DTFS outperform? Temporal fidelity: Base-
lines like CNN+GRU treat spectrograms as static images, blurring
transient events that signal affective dysregulation. Our window-
level channel-band attention preserves millisecond-scale details,
which chiefly raises Recall to 98.03%. Adaptive connectivity: Fixed
graphs in ACM-GNN omit weak yet meaningful couplings. The
learnable mask W, reallocates weight to these edges, yielding a
2.17 pp accuracy gain. Hierarchical priors: Regional priors steer
the model toward established biomarkers—such as frontal alpha
asymmetry—improving precision, especially under limited sample
size. Cross-band coupling: Mutual information captures nonlin-
ear interactions (e.g., alpha—beta desynchronization) distinctive to
MDD, refining decision boundaries and boosting F1.
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Fig. 3. Mean performance and standard deviation over 10 folds on
MODMA.

3.5. Ablation Study and Interpretation

Tableshows degradations when modules are removed, and the fol-
lowing explains observed drops:

Table 2. Ablation on MODMA (mean of 10 folds).

Variant Acc(%) Pre(%) Rec(%) Fl1(%)
Full ELPG-DTFS 97.63 96.68 98.03 97.33
— Prior knowledge 95.12 94.36 96.25 95.29
— Learnable adjacency ~ 94.01 93.52 95.67 94.58
—MI 94.85 91.87 96.18 95.03
— Attention & MI 93.25 91.87 94.12 92.98

Prior knowledge: Both Precision and Recall fall, indicating that
priors simultaneously reduce false positives and uncover true de-
pressive cases by directing attention to neurobiologically grounded
regions.Learnable adjacency: Recall drops most, showing that adap-
tive edges principally help detect otherwise subtle pathological con-
nectivity.MI removal: Precision decreases, revealing MI’s role in fil-
tering out healthy controls with benign spectral variations.Attention
& MI removal: The greatest decline (4.35 pp F1) suggests dramatic
loss of expressive power, leading to blurred class boundaries.

4. CONCLUSION

This paper presents ELPG-DTFES, a prior-guided adaptive graph
neural network for EEG-based depression detection. It introduces
channel-band attention for nonlinear cross-band dependencies, a
learnable adjacency mask for dynamic functional graphs, and a
multi-scale knowledge graph to incorporate clinical priors. On the
MODMA benchmark, ELPG-DTFS achieves 97.63% accuracy and
97.33% F1, surpassing 14 recent baselines. Ablation confirms that
all modules are indispensable, showing the value of combining sig-
nal processing, graph learning, and domain knowledge for objective
depression diagnosis.
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